-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgen_s2.py
213 lines (177 loc) · 7.56 KB
/
gen_s2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import ProjectConfiguration, set_seed
# from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from torchvision import transforms
from tqdm.auto import tqdm
# from transformers import CLIPTextModel, CLIPTokenizer
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKLTemporalDecoder #, UNetSpatioTemporalConditionModel
from diffusers.schedulers import EulerDiscreteScheduler
from transformers.utils import ContextManagers
from data.thriple_image import EightAnchorImageDataset
# from models.unet_mv2d_condition import UNetMV2DConditionModel
from typing import List
from models.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
# from pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
from pipelines.pipeline_stable_video_diffusion import StableVideoDiffusionPipeline
from collections import defaultdict
import os
import PIL.Image
from PIL import Image
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel#, compute_snr
from diffusers.utils import check_min_version, deprecate, is_wandb_available #, make_image_grid
from diffusers.utils.import_utils import is_xformers_available
from typing import Dict, Optional, Tuple, List
from dataclasses import dataclass
from utils.rmbg import BackgroundRemoval
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
pretrained_unet_path:str
revision: Optional[str]
validation_dataset: Dict
save_dir: str
seed: Optional[int]
validation_batch_size: int
dataloader_num_workers: int
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_guidance_scales: List[float]
validation_grid_nrow: int
camera_embedding_lr_mult: float
num_views: int
camera_embedding_type: str
pred_type: str # joint, or ablation
enable_xformers_memory_efficient_attention: bool
cond_on_normals: bool
cond_on_colors: bool
def log_validation(dataloader, pipeline, cfg, weight_dtype, name, save_dir):
def save_image_numpy(ndarr, fp):
im = Image.fromarray(ndarr)
im.save(fp)
def save_image(tensor, fp):
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
# pdb.set_trace()
im = Image.fromarray(ndarr)
im.save(fp)
return ndarr
pipeline.set_progress_bar_config(disable=True)
if cfg.seed is None:
generator = None
else:
generator = torch.Generator(device=pipeline.device).manual_seed(cfg.seed)
images_cond, images_pred = [], defaultdict(list)
remove = BackgroundRemoval()
for i, batch in tqdm(enumerate(dataloader)):
with torch.autocast("cuda"):
out = pipeline(
image=batch["imgs_in"][0], first_image=batch["imgs_in"][1], last_image=batch["imgs_in"][2] ,generator=generator, output_type='pt',
).frames
# logger.info(out.shape)
bsz=len(out)
num_frames = 9
cur_dir = os.path.join(save_dir, f'{name}_val_out', f"{cfg.validation_dataset.scene}","s2_masked_rgb")
rgb_dir = os.path.join(save_dir, f'{name}_val_out', f"{cfg.validation_dataset.scene}")
os.makedirs(cur_dir, exist_ok=True)
os.makedirs(rgb_dir, exist_ok=True)
for b in range(bsz):
for j in range(num_frames):
if j not in [0,4,8]:
idx = int((batch["seq"][0]*4 + j) % 32)
color = out[b][j]
rgb_filename = f"rgb{idx}.png"
color = save_image(color, os.path.join(rgb_dir, rgb_filename))
masked_color = remove(color)
masked_color = Image.fromarray(masked_color)
masked_color.save(os.path.join(cur_dir, rgb_filename))
def load_envision3d_pipeline(cfg):
# feature_extractor = CLIPImageProcessor.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt",
# subfolder="feature_extractor")
#
# image_encoder = CLIPVisionModelWithProjection.from_pretrained(
# "stabilityai/stable-video-diffusion-img2vid-xt", subfolder="image_encoder"
# )
# vae = AutoencoderKLTemporalDecoder.from_pretrained(
# "stabilityai/stable-video-diffusion-img2vid-xt", subfolder="vae",
# )
#
# unet = UNetSpatioTemporalConditionModel.from_pretrained(
# cfg.pretrained_model_name_or_path, subfolder="unet",
# low_cpu_mem_usage=False,
# # sample_size=32, cd_attention_mid=True, low_cpu_mem_usage=False
# )
pipeline = StableVideoDiffusionPipeline.from_pretrained(
cfg.pretrained_model_name_or_path,
safety_checker=None,
torch_dtype=weight_dtype
)
# pipeline.to('cuda:0')
pipeline.unet.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipeline.to('cuda:0')
# sys.main_lock = threading.Lock()
return pipeline
def main(
cfg: TestConfig
):
# If passed along, set the training seed now.
if cfg.seed is not None:
set_seed(cfg.seed)
pipeline = load_envision3d_pipeline(cfg)
if cfg.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
print(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
pipeline.unet.enable_xformers_memory_efficient_attention()
print("use xformers.")
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Get the dataset
validation_dataset = EightAnchorImageDataset(**cfg.validation_dataset)
# DataLoaders creation:
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset, batch_size=cfg.validation_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers
)
os.makedirs(cfg.save_dir, exist_ok=True)
log_validation(
validation_dataloader,
pipeline,
cfg,
weight_dtype,
's2',
cfg.save_dir)
if __name__ == '__main__':
weight_dtype = torch.float16
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
args, extras = parser.parse_known_args()
from utils.misc import load_config
from omegaconf import OmegaConf
# parse YAML config to OmegaConf
cfg = load_config(args.config, cli_args=extras)
print(cfg)
schema = OmegaConf.structured(TestConfig)
# cfg = OmegaConf.load(args.config)
cfg = OmegaConf.merge(schema, cfg)
main(cfg)