-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathinference_demo.py
530 lines (467 loc) · 27.2 KB
/
inference_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import torch
from PIL import Image
import os.path as osp
import sys
from .base import BaseModel
from ..smp import *
from ..dataset import DATASET_TYPE
import re
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
import uuid
import copy
import json
from transformers import StoppingCriteria, StoppingCriteriaList
class StopOnStrings(StoppingCriteria):
def __init__(self, stop_strings, tokenizer):
self.stop_strings = stop_strings
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
generated_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop_string in self.stop_strings:
if stop_string in generated_text:
return True
return False
class StopOnPeriod(StoppingCriteria):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
generated_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
if generated_text.endswith('.'):
return True
return False
class llama_vision(BaseModel):
INSTALL_REQ = False
INTERLEAVE = False
# This function is used to split Llama-3.2-90B
def split_model(self):
import math
device_map = {}
num_gpus = torch.cuda.device_count()
rank, world_size = get_rank_and_world_size()
num_gpus = num_gpus // world_size
num_layers = 100
# GPU0: -5, GPU-1: -7
total_cost = num_layers + 5 + 7
# Since the first GPU will be used for ViT, treat it as 0.8 GPU.
num_layers_per_gpu = total_cost // num_gpus
num_layers_per_gpu = [num_layers_per_gpu] * num_gpus
num_layers_per_gpu[0] -= 5
num_layers_per_gpu[-1] -= 7
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i
layer_cnt += 1
device_map['vision_model'] = rank
device_map['language_model.model.embed_tokens'] = rank
device_map['language_model.model.rotary_emb'] = rank
device_map['language_model.model.norm'] = rank + world_size * (num_gpus - 1)
device_map['language_model.lm_head'] = rank + world_size * (num_gpus - 1)
device_map['multi_modal_projector'] = rank + world_size * (num_gpus - 1)
return device_map
def __init__(self, model_path='meta-llama/Llama-3.2-11B-Vision-Instruct', **kwargs):
try:
from transformers import MllamaForConditionalGeneration, AutoProcessor
except Exception as e:
logging.critical('Please install transformers>=4.45.0 before using llama_vision.')
raise e
if '90b' in model_path.lower():
device_map = self.split_model()
self.model = MllamaForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map=device_map,
).eval()
else:
self.model = MllamaForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map='cpu',
).cuda().eval()
self.device = 'cuda'
self.processor = AutoProcessor.from_pretrained(model_path)
if 'Instruct' in model_path:
kwargs_default = dict(do_sample=True, temperature=0.6, top_p=0.9)
else:
kwargs_default = dict(do_sample=False, max_new_tokens=2048, temperature=0.0, top_p=None, num_beams=5)
kwargs_default = dict(do_sample=True, max_new_tokens=2048, temperature=0.6, top_p=0.9)
kwargs.update(kwargs_default)
print(f'Following kwargs received: {kwargs}, will use as generation config. ')
self.kwargs = kwargs
self.model_name = model_path
def use_custom_prompt(self, dataset):
if dataset is None:
return False
if listinstr(['AI2D', 'MMMU', 'MathVista', 'ChartQA', 'DocVQA'], dataset):
# For Certain dataset we use custom prompt
return True
else:
return False
def build_prompt(self, line, dataset=None):
assert self.use_custom_prompt(dataset)
assert dataset is None or isinstance(dataset, str)
tgt_path = self.dump_image(line, dataset)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
if listinstr(['AI2D'], dataset):
self.kwargs['max_new_tokens'] = 2048
for key, item in options.items():
question += f'\n{key}. {item}'
if '11B' in self.model_name:
prompt = (
f'Look at the scientific diagram carefully and answer the following question: {question}\n'
f'Respond only with the correct option digit.'
)
elif '90B' in self.model_name:
prompt = (
f'Look at the scientific diagram carefully and answer the following question: {question}\n'
f'Respond only with the correct option digit.'
)
elif listinstr(['MMMU'], dataset):
self.kwargs['max_new_tokens'] = 2048
options = '\n'.join([f'{key}. {item}' for key, item in options.items()])
prompt = (
f'Look at the image carefully and solve the following question step-by-step. '
f'Question: {question} Options: {options} Indicate the correct answer at the end.'
)
for i in range(len(tgt_path)):
prompt = prompt.replace(f'<image {i+1}>', '')
elif listinstr(['MathVista'], dataset):
self.kwargs['max_new_tokens'] = 2048
prompt = f'{question}'
elif listinstr(['ChartQA'], dataset):
self.kwargs['max_new_tokens'] = 512
if '11B' in self.model_name:
prompt = (
f'You are provided a chart image and will be asked a question. '
f'You have to think through your answer and provide a step-by-step solution. '
f'Once you have the solution, write the final answer in at most a few words at the end '
f"with the phrase \"FINAL ANSWER:\". "
f"The question is: {question}<cot_start>Let's think step by step."
)
elif '90B' in self.model_name:
prompt = (
f'You are provided a chart image and will be asked a question. '
f'Follow these steps carefully:\n '
f'Step 1: Analyze the question to understand what specific data or information is being asked for. '
f'Focus on whether the question is asking for a specific number or category '
f'from the chart image.\n '
f'Step 2: Identify any numbers, categories, or groups mentioned in the question '
f'and take note of them. Focus on detecting and matching them directly to the image. \n'
f'Step 3: Study the image carefully and find the relevant data corresponding to the categories '
f'or numbers mentioned. Avoid unnecessary assumptions or calculations; '
f'simply read the correct data from the image.\n '
f'Step 4: Develop a clear plan to solve the question by locating the right data. '
f'Focus only on the specific category or group that matches the question. \n'
f'Step 5: Use step-by-step reasoning to ensure you are referencing the correct numbers '
f'or data points from the image, avoiding unnecessary extra steps or interpretations.\n '
f"Step 6: Provide the final answer, starting with \"FINAL ANSWER:\" "
f'and using as few words as possible, '
f'simply stating the number or data point requested. \n\n '
f"The question is: {question}<cot_start>Let's think step by step."
)
elif listinstr(['DocVQA'], dataset):
self.kwargs['max_new_tokens'] = 512
prompt = (
f'Read the text in the image carefully and answer the question '
f'with the text as seen exactly in the image. '
f'For yes/no questions, just respond Yes or No. '
f'If the answer is numeric, just respond with the number and nothing else. '
f'If the answer has multiple words, just respond with the words and absolutely nothing else. '
f'Never respond in a sentence or a phrase.\n Question: {question}'
)
else:
raise NotImplementedError(f'Dataset {dataset}) not supported.')
message = [dict(type='text', value=prompt)]
message.extend([dict(type='image', value=s) for s in tgt_path])
return message
def judge(self, image, prompt, outputs, type="summary"):
input_outputs = []
hint = None
if type == "all":
judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better answers the question.'
recall_prompt = ""
for output in outputs:
input_outputs.append(output)
elif type == "sentence":
judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide is a better next sentence for the answer to the question.'
recall_prompt = ""
for output in outputs:
sentences = output.split(".")
if len(sentences) > 2:
hint = ' '.join(sentences[:-2])
input_outputs.append(sentences[-2])
elif type == "summary":
judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better provides a summary of what it should do to solve the question. The summary should focus on outlining the main approach instead of stating specific analytical reasoning or math formula.'
recall_prompt = f'Please note that a better summary should focus on outlining the main approach instead of stating specific analytical reasoning or math formula.'
for output in outputs:
input_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
if input_match:
input_outputs.append(input_match.group(1))
elif type == "caption":
judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better summarizes the information in the image related to the question, and has fewer errors. It is essential that the captions are as thorough as possible while remaining accurate, capturing as many details as possible rather than providing only general commentary.'
recall_prompt = f'Please note that a better caption should be as thorough as possible while remaining accurate, capturing as many details as possible rather than providing only general commentary.'
for output in outputs:
input_match = re.search(r'<CAPTION>(.*?)</CAPTION>', output, re.DOTALL)
if input_match:
hint_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
if hint_match:
input_outputs.append(input_match.group(1))
elif type == "reasoning":
judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide better explains the reasoning process to solve the question, and has fewer errors. Begin by thoroughly reviewing the question, followed by an in-depth examination of each answer individually, noting any differences. Subsequently, analyze these differences to determine which response demonstrates stronger reasoning and provide a clear conclusion.'
recall_prompt = f'Begin by thoroughly reviewing the question, followed by an in-depth examination of each answer individually, noting any differences. Subsequently, analyze these differences to determine which response demonstrates stronger reasoning and provide a clear conclusion.'
for output in outputs:
input_match = re.search(r'<REASONING>(.*?)</REASONING>', output, re.DOTALL)
if input_match:
hint_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
if hint_match:
hint_caption_match = re.search(r'<CAPTION>(.*?)</CAPTION>', output, re.DOTALL)
if hint_caption_match:
hint = hint_caption_match.group(1)
input_outputs.append(input_match.group(1))
elif type == "conclusion":
judge_prompt = f'Now you act as a judge, helping me determine which of the two texts I provide offers a more effective conclusion to the question. The conclusion should align with the reasoning presented in the hint. The conclusion should never refuse to answer the question.'
recall_prompt = f'Please note that a better conclusion should align with the reasoning presented in the hint. The conclusion should never refuse to answer the question.'
for output in outputs:
input_match = re.search(r'<CONCLUSION>(.*?)</CONCLUSION>', output, re.DOTALL)
if input_match:
hint_match = re.search(r'<SUMMARY>(.*?)</SUMMARY>', output, re.DOTALL)
if hint_match:
hint_caption_match = re.search(r'<CAPTION>(.*?)</CAPTION>', output, re.DOTALL)
if hint_caption_match:
hint_reasoning_match = re.search(r'<REASONING>(.*?)</REASONING>', output, re.DOTALL)
if hint_reasoning_match:
hint = hint_caption_match.group(1) + hint_reasoning_match.group(1)
input_outputs.append(input_match.group(1))
if type == "reasoning":
reasoning_prompt = f"""Now you act as a judge, helping me determine whether the reasoning process in the given text is correct and accurate based on the given information.
You should assume that the given information about the image is correct.
You should only consider the reasoning process itself, not the correctness of the background information.
If the reasoning process invovles any calculations, you should verify the accuracy of the calculations.
You should output 'correct' if you don't find any errors in the reasoning process, and 'incorrect' if you find any errors."""
reasoning_prompt_1 = reasoning_prompt + f'\n\nGiven Information: {hint}' + f'\n\nReasoning Process: {input_outputs[0]}'
reasoning_message_1 = [
{'role': 'user', 'content': [
{'type': 'text', 'text': reasoning_prompt_1}
]}
]
reasoning_input_text_1 = self.processor.apply_chat_template(reasoning_message_1, add_generation_prompt=True)
reasoning_inputs_1 = self.processor(None, reasoning_input_text_1, return_tensors='pt').to(self.device)
reasoning_output_1 = self.model.generate(**reasoning_inputs_1, **self.kwargs)
reasoning_output_text_1 = self.processor.decode(reasoning_output_1[0][reasoning_inputs_1['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace('<|endoftext|>', '')
if "incorrect" in reasoning_output_text_1:
#logging
with open('log.jsonl', 'a') as f:
json_obj = {
"prompt": prompt,
"outputs": outputs,
"judge_output": reasoning_output_text_1
}
f.write(json.dumps(json_obj) + '\n')
return 1
reasoning_prompt_2 = reasoning_prompt + f'\n\nGiven Information: {hint}' + f'\n\nReasoning Process: {input_outputs[1]}'
reasoning_message_2 = [
{'role': 'user', 'content': [
{'type': 'text', 'text': reasoning_prompt_2}
]}
]
reasoning_input_text_2 = self.processor.apply_chat_template(reasoning_message_2, add_generation_prompt=True)
reasoning_inputs_2 = self.processor(None, reasoning_input_text_2, return_tensors='pt').to(self.device)
reasoning_output_2 = self.model.generate(**reasoning_inputs_2, **self.kwargs)
reasoning_output_text_2 = self.processor.decode(reasoning_output_2[0][reasoning_inputs_2['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace('<|endoftext|>', '')
if "incorrect" in reasoning_output_text_2:
#logging
with open('log.jsonl', 'a') as f:
json_obj = {
"prompt": prompt,
"outputs": outputs,
"judge_output": reasoning_output_text_2
}
f.write(json.dumps(json_obj) + '\n')
return 0
judge_prompt += f'\n\nQuestion: {prompt}'
if hint:
judge_prompt += f'\n\nHint about the Question: {hint}'
for i, output in enumerate(input_outputs):
judge_prompt += f'\nRepsonse {i+1}: {output}'
judge_prompt += f'\n\n{recall_prompt}'
judge_prompt += f' Please strictly follow the following format requirements when outputting, and don’t have any other unnecessary words.'
judge_prompt += f'\n\nOutput format: "Since [reason], I choose response [1/2]."'
judge_message = [
{'role': 'user', 'content': [
{'type': 'image'},
{'type': 'text', 'text': judge_prompt}
]}
]
judge_input_text = self.processor.apply_chat_template(judge_message, add_generation_prompt=True)
judge_inputs = self.processor(image, judge_input_text, return_tensors='pt').to(self.device)
judge_output = self.model.generate(**judge_inputs, **self.kwargs)
judge_output_text = self.processor.decode(judge_output[0][judge_inputs['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace('<|endoftext|>', '')
# log to log.jsonl (json format){"prompt": prompt, "outputs": outputs, "judge_output": judge_output_text}
with open('log.jsonl', 'a') as f:
json_obj = {
"prompt": prompt,
"outputs": outputs,
"judge_output": judge_output_text
}
f.write(json.dumps(json_obj) + '\n')
if "I choose response 1" in judge_output_text:
return 0
else:
return 1
def generate_inner_best_of_N(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path)
messages = [
{'role': 'user', 'content': [
{'type': 'image'},
{'type': 'text', 'text': prompt}
]}
]
input_text = self.processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = self.processor(image, input_text, return_tensors='pt').to(self.device)
if not self.use_custom_prompt(dataset):
if DATASET_TYPE(dataset) == 'MCQ' or DATASET_TYPE(dataset) == 'Y/N':
self.kwargs['max_new_tokens'] = 2048
else:
self.kwargs['max_new_tokens'] = 2048
initial_length = len(inputs['input_ids'][0])
input_ids = copy.deepcopy(inputs['input_ids'])
stop_criteria = StoppingCriteriaList([StopOnStrings(['</CONCLUSION>'], self.processor.tokenizer)])
candidates = []
for _ in range(10):
generation_kwargs = self.kwargs.copy()
generation_kwargs.update({
'stopping_criteria': stop_criteria
})
inputs = self.processor(image, input_ids, return_tensors='pt').to(self.device)
output = self.model.generate(**inputs, **generation_kwargs)
new_generated_ids = output[0]
generated_text = self.processor.tokenizer.decode(new_generated_ids[initial_length:], skip_special_tokens=True)
candidates.append({
'input_ids': new_generated_ids.unsqueeze(0),
'generated_text': generated_text,
})
while(len(candidates) > 1):
# randomly select two candidates
candidate1 = candidates.pop(np.random.randint(len(candidates)))
candidate2 = candidates.pop(np.random.randint(len(candidates)))
outputs = [candidate1['generated_text'], candidate2['generated_text']]
best_index = self.judge(image, prompt, outputs, type="all")
if best_index == 0:
candidates.append(candidate1)
else:
candidates.append(candidate2)
input_ids = candidates[0]['input_ids']
final_output = self.processor.tokenizer.decode(input_ids[0][initial_length:], skip_special_tokens=True)
return final_output
def generate_inner_sentence_beam(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path)
messages = [
{'role': 'user', 'content': [
{'type': 'image'},
{'type': 'text', 'text': prompt}
]}
]
input_text = self.processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = self.processor(image, input_text, return_tensors='pt').to(self.device)
if not self.use_custom_prompt(dataset):
if DATASET_TYPE(dataset) == 'MCQ' or DATASET_TYPE(dataset) == 'Y/N':
self.kwargs['max_new_tokens'] = 2048
else:
self.kwargs['max_new_tokens'] = 2048
initial_length = len(inputs['input_ids'][0])
input_ids = copy.deepcopy(inputs['input_ids'])
while "</CONCLUSION>" not in self.processor.tokenizer.decode(input_ids[0][initial_length:], skip_special_tokens=True):
stop_criteria = StoppingCriteriaList([StopOnPeriod(self.processor.tokenizer), StopOnStrings(["</CONCLUSION>"], self.processor.tokenizer)])
candidates = []
for _ in range(5):
generation_kwargs = self.kwargs.copy()
generation_kwargs.update({
'stopping_criteria': stop_criteria
})
inputs = self.processor(image, input_ids, return_tensors='pt').to(self.device)
output = self.model.generate(**inputs, **generation_kwargs)
new_generated_ids = output[0]
generated_text = self.processor.tokenizer.decode(new_generated_ids[initial_length:], skip_special_tokens=True)
candidates.append({
'input_ids': new_generated_ids.unsqueeze(0),
'generated_text': generated_text,
})
while(len(candidates) > 1):
# randomly select two candidates
candidate1 = candidates.pop(np.random.randint(len(candidates)))
candidate2 = candidates.pop(np.random.randint(len(candidates)))
outputs = [candidate1['generated_text'], candidate2['generated_text']]
best_index = self.judge(image, prompt, outputs, type="sentence")
if best_index == 0:
candidates.append(candidate1)
else:
candidates.append(candidate2)
input_ids = candidates[0]['input_ids']
final_output = self.processor.tokenizer.decode(input_ids[0][initial_length:], skip_special_tokens=True)
return final_output
def generate_inner_stage_beam(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image = Image.open(image_path)
messages = [
{'role': 'user', 'content': [
{'type': 'image'},
{'type': 'text', 'text': prompt}
]}
]
input_text = self.processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = self.processor(image, input_text, return_tensors='pt').to(self.device)
if not self.use_custom_prompt(dataset):
if DATASET_TYPE(dataset) == 'MCQ' or DATASET_TYPE(dataset) == 'Y/N':
self.kwargs['max_new_tokens'] = 2048
else:
self.kwargs['max_new_tokens'] = 2048
stages = ['<SUMMARY>', '<CAPTION>', '<REASONING>', '<CONCLUSION>']
end_markers = ['</SUMMARY>', '</CAPTION>', '</REASONING>', '</CONCLUSION>']
initial_length = len(inputs['input_ids'][0])
input_ids = copy.deepcopy(inputs['input_ids'])
for stage, end_marker in zip(stages, end_markers):
stop_criteria = StoppingCriteriaList([StopOnStrings([end_marker], self.processor.tokenizer)])
candidates = []
for _ in range(10):
generation_kwargs = self.kwargs.copy()
generation_kwargs.update({
'stopping_criteria': stop_criteria
})
inputs = self.processor(image, input_ids, return_tensors='pt').to(self.device)
output = self.model.generate(**inputs, **generation_kwargs)
new_generated_ids = output[0]
generated_text = self.processor.tokenizer.decode(new_generated_ids[initial_length:], skip_special_tokens=True)
candidates.append({
'input_ids': new_generated_ids.unsqueeze(0),
'generated_text': generated_text,
})
while(len(candidates) > 1):
# randomly select two candidates
candidate1 = candidates.pop(np.random.randint(len(candidates)))
candidate2 = candidates.pop(np.random.randint(len(candidates)))
outputs = [candidate1['generated_text'], candidate2['generated_text']]
best_index = self.judge(image, prompt, outputs, type=stage[1:-1].lower())
if best_index == 0:
candidates.append(candidate1)
else:
candidates.append(candidate2)
input_ids = candidates[0]['input_ids']
final_output = self.processor.tokenizer.decode(input_ids[0][initial_length:], skip_special_tokens=True)
return final_output
def generate_inner(self, message, dataset=None):
type = "beam"
if type == "all":
return self.generate_inner_best_of_N(message, dataset)
elif type == "sentence":
return self.generate_inner_sentence_beam(message, dataset)
else:
return self.generate_inner_stage_beam(message, dataset)