-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathpredict.py
112 lines (97 loc) · 3.62 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Prediction interface for Cog ⚙️
# https://cog.run/python
import os
import subprocess
import time
from threading import Thread
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from transformers.generation.streamers import TextIteratorStreamer
from cog import BasePredictor, Input, Path, ConcatenateIterator
MODEL_CACHE = "model_cache"
MODEL_URL = f"https://weights.replicate.delivery/default/Xkev/Llama-3.2V-11B-cot/{MODEL_CACHE}.tar"
os.environ.update(
{
"HF_DATASETS_OFFLINE": "1",
"TRANSFORMERS_OFFLINE": "1",
"HF_HOME": MODEL_CACHE,
"TORCH_HOME": MODEL_CACHE,
"HF_DATASETS_CACHE": MODEL_CACHE,
"TRANSFORMERS_CACHE": MODEL_CACHE,
"HUGGINGFACE_HUB_CACHE": MODEL_CACHE,
}
)
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
self.model = MllamaForConditionalGeneration.from_pretrained(
f"{MODEL_CACHE}/Xkev/Llama-3.2V-11B-cot",
torch_dtype=torch.bfloat16,
device_map="auto",
)
self.processor = AutoProcessor.from_pretrained(
f"{MODEL_CACHE}/Xkev/Llama-3.2V-11B-cot"
)
def predict(
self,
prompt: str = Input(
description="Text prompt",
default="If I had to write a haiku for this one, it would be: ",
),
image: Path = Input(description="Grayscale input image"),
max_new_tokens: int = Input(
description="Max number of generated tokens", default=1024
),
temperature: float = Input(
description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value.",
ge=0,
le=5,
default=0.9,
),
top_p: float = Input(
description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens, used when temperature > 0",
ge=0.0,
le=1.0,
default=0.95,
),
) -> ConcatenateIterator[str]:
"""Run a single prediction on the model"""
messages = [
{
"role": "user",
"content": [{"type": "image"}, {"type": "text", "text": prompt}],
}
]
image = Image.open(str(image)).convert("RGB")
input_text = self.processor.apply_chat_template(
messages, add_generation_prompt=True
)
inputs = self.processor(
image, input_text, add_special_tokens=False, return_tensors="pt"
).to(self.model.device)
streamer = TextIteratorStreamer(
self.processor, skip_special_tokens=True, skip_prompt=True
)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=temperature > 0,
temperature=temperature,
top_p=top_p,
)
with torch.inference_mode():
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
thread.start()
for new_token in streamer:
yield new_token
thread.join()