-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
198 lines (164 loc) · 7.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from scipy.stats import spearmanr
import numpy as np
from itertools import permutations
from con_optimization.utils import *
from tqdm import tqdm
import torch.optim.lr_scheduler as lr_scheduler
def evaluate(w, G):
w_np = w.detach().numpy()
G_np = G.detach().numpy()
rho, p_value = spearmanr(w_np, G_np)
return -torch.tensor(rho, requires_grad=True)
def pearson_correlation(x, y):
mean_x = torch.mean(x)
mean_y = torch.mean(y)
diff_x = x - mean_x
diff_y = y - mean_y
numerator = torch.sum(diff_x * diff_y)
denominator = torch.sqrt(torch.sum(diff_x**2) * torch.sum(diff_y**2))
correlation = numerator / denominator
return 1 - correlation
def cal_score(battles_df, w, n):
init_G = Variable(torch.zeros(n))
init_P = Variable(torch.zeros(n))
log_dict = {ele: {'battle': 0, 'judge': 0} for ele in model_list}
# win:1, tie: 0.5, lose: 0
for index, row in battles_df.iterrows():
# score G_1, G_2
winner_list = [row['g1_winner'], row['g2_winner']]
if winner_list.count('model_1') > winner_list.count('model_2'):
G_1, G_2 = 1, 0
elif winner_list.count('model_1') < winner_list.count('model_2'):
G_1, G_2 = 0, 1
elif winner_list.count('model_1') == winner_list.count('model_2'):
G_1, G_2 = 0.5, 0.5
if row['model_1'] not in model_list or row['model_2'] not in model_list:
continue
## update scores
init_G[model_list.index(row['model_1'])] += G_1 * w[model_list.index(row['judge'][0])]
init_G[model_list.index(row['model_2'])] += G_2 * w[model_list.index(row['judge'][0])]
error_penalize = 0.05 if winner_list.count('error') > 0 else 0
init_P[model_list.index(row['judge'][0])] += error_penalize * w[model_list.index(row['judge'][0])]
## update log
log_dict[row['model_1']]['battle'] += 1
log_dict[row['model_2']]['battle'] += 1
log_dict[row['judge'][0]]['judge'] += 1
for i in range(len(model_list)):
init_G[i] /= log_dict[model_list[i]]['battle']
init_P[i] /= log_dict[model_list[i]]['judge']
return init_G
def cal_score_rank(battles_df, w, n):
init_G = Variable(torch.zeros(n))
init_P = Variable(torch.zeros(n))
log_dict = {ele: {'battle': 0, 'judge': 0} for ele in model_list}
rank = torch.argsort(w, descending=True).tolist()
rank_dict = {model_list[rank[i]]: i for i in range(len(rank))}
# win:1, tie: 0.5, lose: 0
for index, row in battles_df.iterrows():
if row['model_1'] not in model_list or row['model_2'] not in model_list:
continue
K = 200
winner_list = [row['g1_winner'], row['g2_winner']]
if winner_list.count('model_1') > winner_list.count('model_2'):
G_1, G_2 = 1 + ((rank_dict[row['model_1']] - rank_dict[row['model_2']]) * 1.0 / K), 0
elif winner_list.count('model_1') < winner_list.count('model_2'):
G_1, G_2 = 0, 1 + ((rank_dict[row['model_2']] - rank_dict[row['model_1']]) * 1.0 / K)
elif winner_list.count('model_1') == winner_list.count('model_2'):
G_1, G_2 = 0.5, 0.5
init_G[model_list.index(row['model_1'])] += G_1 * w[model_list.index(row['judge'][0])]
init_G[model_list.index(row['model_2'])] += G_2 * w[model_list.index(row['judge'][0])]
error_penalize = 0.05 if winner_list.count('error') > 0 else 0
init_P[model_list.index(row['judge'][0])] += error_penalize * w[model_list.index(row['judge'][0])]
log_dict[row['model_1']]['battle'] += 1
log_dict[row['model_2']]['battle'] += 1
log_dict[row['judge'][0]]['judge'] += 1
for i in range(len(model_list)):
init_G[i] /= log_dict[model_list[i]]['battle']
init_P[i] /= log_dict[model_list[i]]['judge']
# init_G[i] -= init_P[i]
return init_G
def train(model_list, battles, num_epochs=30, baseline=False):
battles = battles.sample(frac=1, random_state=4)
n = len(model_list)
init_w = Variable(torch.randn(n))
model = nn.Sequential(
nn.Linear(n, n),
nn.Sigmoid()
)
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
print(model_list)
for epoch in range(num_epochs):
w = model(init_w)
if baseline:
w = Variable(torch.ones(n))
G = cal_score(battles, w, n)
print("# epoch: " + str(epoch))
print(w)
print(G)
break
# G = cal_elo(battles, w, n)
# G = cal_score(battles, w, n)
G = cal_score_rank(battles, w, n)
print("# epoch: "+str(epoch))
print(w)
print(G)
loss = pearson_correlation(w, G) # loss
print(loss)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
scheduler.step()
if (epoch + 1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
return w, G
def run_peer_review():
w, G = train(model_list, battles, num_epochs=30)
# sort
sorted_indices = torch.argsort(G, descending=True).tolist()
Grade = G.tolist()
for i in range(len(sorted_indices)):
ind = sorted_indices[i]
print('#' + str(i + 1) + ' ' + model_list[ind] + ' | Grade:' + str(Grade[ind]))
# Calculate Permutation Entropy
print(sorted_indices)
entropy = permutation_entropy_random(sorted_indices, 3)
print("Permutation Entropy:", entropy)
steps = count_bubble_sort_steps(sorted_indices)
print("Number of Bubble Sort Iterations:", steps)
steps = longest_increasing_subsequence_length(sorted_indices)
print("Number of Longest Increasing Subsequence:", steps)
def run_baseline():
w, G = train(model_list, battles, num_epochs=1, baseline=True)
# sort
sorted_indices = torch.argsort(G, descending=True).tolist()
Grade = G.tolist()
for i in range(len(sorted_indices)):
ind = sorted_indices[i]
print('#' + str(i + 1) + ' ' + model_list[ind] + ' | Grade:' + str(Grade[ind]))
# Calculate Permutation Entropy
print(sorted_indices)
entropy = permutation_entropy_random(sorted_indices, 3)
print("Permutation Entropy:", entropy)
steps = count_bubble_sort_steps(sorted_indices)
print("Number of Bubble Sort Iterations:", steps)
steps = longest_increasing_subsequence_length(sorted_indices)
print("Number of Longest Increasing Subsequence:", steps)
if __name__ == "__main__":
model_list = ['gpt-3.5-turbo', 'guanaco-33b-merged', 'vicuna-13b-v1.5', 'WizardLM-13B-V1.2', 'vicuna-7b-v1.5','koala-13b',
'gpt4all-13b-snoozy', 'mpt-7b-chat', 'oasst-sft-4-pythia-12b-epoch-3.5', 'alpaca-13b', 'fastchat-t5-3b-v1.0', 'chatglm-6b',
'stablelm-tuned-alpha-7b', 'dolly-v2-12b', 'llama-13b']
battles = pd.DataFrame()
for model_str in model_list:
print(model_str)
df = pd.read_json('./llm_judge/data/mt_bench/model_judgment/' + model_str + '_pair.jsonl', lines=True).sort_values(ascending=True,
by=["tstamp"])
battles = pd.concat([battles, df])
run_baseline()
run_peer_review()