-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
celoss.py
76 lines (66 loc) · 2.52 KB
/
celoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppcls.utils import logger
class CELoss(nn.Layer):
"""
Cross entropy loss
"""
def __init__(self, reduction="mean", epsilon=None):
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
assert reduction in ["mean", "sum", "none"]
self.reduction = reduction
def _labelsmoothing(self, target, class_num):
if len(target.shape) == 1 or target.shape[-1] != class_num:
one_hot_target = F.one_hot(target, class_num)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
return soft_target
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
if self.epsilon is not None:
class_num = x.shape[-1]
label = self._labelsmoothing(label, class_num)
x = -F.log_softmax(x, axis=-1)
loss = paddle.sum(x * label, axis=-1)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
else:
if label.shape[-1] == x.shape[-1]:
label = F.softmax(label, axis=-1)
soft_label = True
else:
soft_label = False
loss = F.cross_entropy(
x,
label=label,
soft_label=soft_label,
reduction=self.reduction)
return {"CELoss": loss}
class MixCELoss(object):
def __init__(self, *args, **kwargs):
msg = "\"MixCELos\" is deprecated, please use \"CELoss\" instead."
logger.error(DeprecationWarning(msg))
raise DeprecationWarning(msg)