Skip to content

Commit 8119f0d

Browse files
committed
Update release note
1 parent f917936 commit 8119f0d

File tree

2 files changed

+29
-0
lines changed

2 files changed

+29
-0
lines changed

docs/release_notes.md

+15
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,21 @@ English | [简体中文](release_notes_cn.md)
22

33
## Release Notes
44

5+
* 2020.02.26
6+
7+
**`v2.0`**
8+
* We newly released version 2.0 which has been fully upgraded to dynamic graphics. It supports more than 20 segmentation models, 4 backbone networks, , 5 datasets and 7 losses:
9+
* Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, OCRNet, PSPNet, UNet, and U^2Net
10+
* Backbone networks: ResNet, HRNet, MobileNetV3, and Xception
11+
* Datasets: Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
12+
* Losses: CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss、OhemCrossEntropyLoss、RelaxBoundaryLoss、OhemEdgeAttentionLoss
13+
* We provide more than 50 high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
14+
* The new version support multi-card GPU parallel evaluation for more efficient metrics calculation. It also support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.
15+
* XPU model training including DeepLabv3, HRNet, UNet, is available now.
16+
* We open source a semantic segmentation model based on the Hierarchical Multi-Scale Attention structure, and it reached 87% mIoU on the Cityscapes validation set.
17+
* The dynamic graph mode supports model compression functions such as online quantification and pruning.
18+
* The dynamic graph mode supports model export for high-performance deployment.
19+
520
* 2020.12.18
621

722
**`v2.0.0-rc`**

docs/release_notes_cn.md

+14
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,20 @@
11
简体中文 | [English](release_notes.md)
22

33
## Release Notes
4+
* 2020.02.26
5+
6+
**`v2.0`**
7+
* 全新发布2.0版本,全面升级至动态图,支持20+分割模型,4个骨干网络,5个数据集,7种Loss:
8+
* 分割模型:ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U^2Net, Attention UNet、Decoupled SegNet、EMANet、DNLNet、ISANet
9+
* 骨干网络:ResNet, HRNet, MobileNetV3, Xception
10+
* 数据集:Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
11+
* Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss、OhemCrossEntropyLoss、RelaxBoundaryLoss、OhemEdgeAttentionLoss
12+
* 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 50+
13+
* 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。
14+
* 支持XPU模型训练,包括DeepLabv3、HRNet、UNet。
15+
* 开源了基于Hierarchical Multi-Scale Attention结构的语义分割模型,在Cityscapes验证集上达到87% mIoU。
16+
* 动态图模式支持模型在线量化、剪枝等模型压缩功能。
17+
* 动态图下支持模型动转静,实现高性能部署。
418

519
* 2020.12.18
620

0 commit comments

Comments
 (0)