diff --git a/paddlex/inference/components/transforms/image/common.py b/paddlex/inference/components/transforms/image/common.py index 658f4a6546..1904f321c9 100644 --- a/paddlex/inference/components/transforms/image/common.py +++ b/paddlex/inference/components/transforms/image/common.py @@ -278,11 +278,11 @@ def apply(self, img): x2 = min(w, x1 + cw) y2 = min(h, y1 + ch) coords = (x1, y1, x2, y2) - if coords == (0, 0, w, h): + img = F.slice(img, coords=coords) + if w < cw or h < ch: raise ValueError( f"Input image ({w}, {h}) smaller than the target size ({cw}, {ch})." ) - img = F.slice(img, coords=coords) return {"img": img, "img_size": [img.shape[1], img.shape[0]]} diff --git a/paddlex/inference/models_new/common/vision/funcs.py b/paddlex/inference/models_new/common/vision/funcs.py index 81ccefffa6..b8c9606aac 100644 --- a/paddlex/inference/models_new/common/vision/funcs.py +++ b/paddlex/inference/models_new/common/vision/funcs.py @@ -13,6 +13,8 @@ # limitations under the License. import cv2 +import numpy as np +from PIL import Image def check_image_size(input_): @@ -26,13 +28,30 @@ def check_image_size(input_): raise TypeError(f"{input_} cannot represent a valid image size.") -def resize(im, target_size, interp): +def resize(im, target_size, interp, backend="cv2"): """resize image to target size""" w, h = target_size - im = cv2.resize(im, (w, h), interpolation=interp) + resize_functions = {"cv2": _cv2_resize, "pil": _pil_resize} + resize_function = resize_functions.get(backend.lower(), _cv2_resize) + im = resize_function(im, (w, h), interp) return im +def _cv2_resize(src, size, resample): + return cv2.resize(src, size, interpolation=resample) + + +def _pil_resize(src, size, resample, return_numpy=True): + if isinstance(src, np.ndarray): + pil_img = Image.fromarray(src) + else: + pil_img = src + pil_img = pil_img.resize(size, resample) + if return_numpy: + return np.asarray(pil_img) + return pil_img + + def flip_h(im): """flip image horizontally""" if len(im.shape) == 3: diff --git a/paddlex/inference/models_new/common/vision/processors.py b/paddlex/inference/models_new/common/vision/processors.py index 4a75cc7148..162608cff8 100644 --- a/paddlex/inference/models_new/common/vision/processors.py +++ b/paddlex/inference/models_new/common/vision/processors.py @@ -20,20 +20,28 @@ import numpy as np import cv2 +from PIL import Image from . import funcs as F class _BaseResize: - _INTERP_DICT = { + _CV2_INTERP_DICT = { "NEAREST": cv2.INTER_NEAREST, "LINEAR": cv2.INTER_LINEAR, - "CUBIC": cv2.INTER_CUBIC, + "BICUBIC": cv2.INTER_CUBIC, "AREA": cv2.INTER_AREA, "LANCZOS4": cv2.INTER_LANCZOS4, } + _PIL_INTERP_DICT = { + "NEAREST": Image.NEAREST, + "BILINEAR": Image.BILINEAR, + "BICUBIC": Image.BICUBIC, + "BOX": Image.BOX, + "LANCZOS4": Image.LANCZOS, + } - def __init__(self, size_divisor, interp): + def __init__(self, size_divisor, interp, backend="cv2"): super().__init__() if size_divisor is not None: @@ -43,12 +51,21 @@ def __init__(self, size_divisor, interp): self.size_divisor = size_divisor try: - interp = self._INTERP_DICT[interp] + interp = interp.upper() + if backend == "cv2": + interp = self._CV2_INTERP_DICT[interp] + elif backend == "pil": + interp = self._PIL_INTERP_DICT[interp] + else: + raise ValueError("backend must be `cv2` or `pil`") except KeyError: raise ValueError( - "`interp` should be one of {}.".format(self._INTERP_DICT.keys()) + "`interp` should be one of {} or {}.".format( + self._CV2_INTERP_DICT.keys(), self._PIL_INTERP_DICT.keys() + ) ) self.interp = interp + self.backend = backend @staticmethod def _rescale_size(img_size, target_size): @@ -62,7 +79,12 @@ class Resize(_BaseResize): """Resize the image.""" def __init__( - self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR" + self, + target_size, + keep_ratio=False, + size_divisor=None, + interp="LINEAR", + backend="cv2", ): """ Initialize the instance. @@ -76,7 +98,7 @@ def __init__( interp (str, optional): Interpolation method. Choices are 'NEAREST', 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'. """ - super().__init__(size_divisor=size_divisor, interp=interp) + super().__init__(size_divisor=size_divisor, interp=interp, backend=backend) if isinstance(target_size, int): target_size = [target_size, target_size] @@ -102,7 +124,7 @@ def resize(self, img): math.ceil(i / self.size_divisor) * self.size_divisor for i in target_size ] - img = F.resize(img, target_size, interp=self.interp) + img = F.resize(img, target_size, interp=self.interp, backend=self.backend) return img @@ -112,7 +134,9 @@ class ResizeByLong(_BaseResize): longest side. """ - def __init__(self, target_long_edge, size_divisor=None, interp="LINEAR"): + def __init__( + self, target_long_edge, size_divisor=None, interp="LINEAR", backend="cv2" + ): """ Initialize the instance. @@ -123,7 +147,7 @@ def __init__(self, target_long_edge, size_divisor=None, interp="LINEAR"): interp (str, optional): Interpolation method. Choices are 'NEAREST', 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'. """ - super().__init__(size_divisor=size_divisor, interp=interp) + super().__init__(size_divisor=size_divisor, interp=interp, backend=backend) self.target_long_edge = target_long_edge def __call__(self, imgs): @@ -139,7 +163,9 @@ def resize(self, img): h_resize = math.ceil(h_resize / self.size_divisor) * self.size_divisor w_resize = math.ceil(w_resize / self.size_divisor) * self.size_divisor - img = F.resize(img, (w_resize, h_resize), interp=self.interp) + img = F.resize( + img, (w_resize, h_resize), interp=self.interp, backend=self.backend + ) return img @@ -149,7 +175,9 @@ class ResizeByShort(_BaseResize): shortest side. """ - def __init__(self, target_short_edge, size_divisor=None, interp="LINEAR"): + def __init__( + self, target_short_edge, size_divisor=None, interp="LINEAR", backend="cv2" + ): """ Initialize the instance. @@ -160,7 +188,7 @@ def __init__(self, target_short_edge, size_divisor=None, interp="LINEAR"): interp (str, optional): Interpolation method. Choices are 'NEAREST', 'LINEAR', 'CUBIC', 'AREA', and 'LANCZOS4'. Default: 'LINEAR'. """ - super().__init__(size_divisor=size_divisor, interp=interp) + super().__init__(size_divisor=size_divisor, interp=interp, backend=backend) self.target_short_edge = target_short_edge def __call__(self, imgs): @@ -176,7 +204,9 @@ def resize(self, img): h_resize = math.ceil(h_resize / self.size_divisor) * self.size_divisor w_resize = math.ceil(w_resize / self.size_divisor) * self.size_divisor - img = F.resize(img, (w_resize, h_resize), interp=self.interp) + img = F.resize( + img, (w_resize, h_resize), interp=self.interp, backend=self.backend + ) return img diff --git a/paddlex/inference/models_new/image_classification/predictor.py b/paddlex/inference/models_new/image_classification/predictor.py index a01f9daf29..781516b29f 100644 --- a/paddlex/inference/models_new/image_classification/predictor.py +++ b/paddlex/inference/models_new/image_classification/predictor.py @@ -138,10 +138,18 @@ def build_resize( assert resize_short or size if resize_short: op = ResizeByShort( - target_short_edge=resize_short, size_divisor=None, interp="LINEAR" + target_short_edge=resize_short, + size_divisor=None, + interp=interpolation, + backend=backend, ) else: - op = Resize(target_size=size) + op = Resize( + target_size=size, + size_divisor=None, + interp=interpolation, + backend=backend, + ) return "Resize", op @register("CropImage") diff --git a/paddlex/inference/models_new/image_classification/processors.py b/paddlex/inference/models_new/image_classification/processors.py index ab554f9358..730647b658 100644 --- a/paddlex/inference/models_new/image_classification/processors.py +++ b/paddlex/inference/models_new/image_classification/processors.py @@ -56,11 +56,11 @@ def crop(self, img): x2 = min(w, x1 + cw) y2 = min(h, y1 + ch) coords = (x1, y1, x2, y2) - if coords == (0, 0, w, h): + img = F.slice(img, coords=coords) + if w < cw or h < ch: raise ValueError( f"Input image ({w}, {h}) smaller than the target size ({cw}, {ch})." ) - img = F.slice(img, coords=coords) return img