|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +import sys |
| 4 | +import time |
| 5 | + |
| 6 | +import numpy as np |
| 7 | +import rocketqa |
| 8 | +from elasticsearch import Elasticsearch |
| 9 | + |
| 10 | + |
| 11 | +class Querier: |
| 12 | + def __init__(self, es_client, index_name, de_model, ce_model): |
| 13 | + self.es_client = es_client |
| 14 | + self.index_name = index_name |
| 15 | + self.dual_encoder = rocketqa.load_model( |
| 16 | + model=de_model, |
| 17 | + use_cuda=False, # GPU: True |
| 18 | + device_id=0, |
| 19 | + batch_size=32, |
| 20 | + ) |
| 21 | + self.cross_encoder = rocketqa.load_model( |
| 22 | + model=ce_model, |
| 23 | + use_cuda=False, # GPU: True |
| 24 | + device_id=0, |
| 25 | + batch_size=32, |
| 26 | + ) |
| 27 | + |
| 28 | + def encode(self, query): |
| 29 | + embs = self.dual_encoder.encode_query(query=[query]) |
| 30 | + vector = list(embs)[0] |
| 31 | + # Normalize the NumPy array to a unit vector to use `dot_product` similarity, |
| 32 | + # see https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params. |
| 33 | + vector = vector / np.linalg.norm(vector) |
| 34 | + return vector |
| 35 | + |
| 36 | + def search(self, query, topk=10): |
| 37 | + vector = self.encode(query) |
| 38 | + knn = dict( |
| 39 | + field="vector", |
| 40 | + query_vector=vector, |
| 41 | + k=topk, |
| 42 | + num_candidates=100, |
| 43 | + ) |
| 44 | + result = self.es_client.knn_search(index=self.index_name, knn=knn) |
| 45 | + |
| 46 | + candidates = [ |
| 47 | + dict( |
| 48 | + title=doc['_source']['title'], |
| 49 | + para=doc['_source']['paragraph'], |
| 50 | + ) |
| 51 | + for doc in result['hits']['hits'] |
| 52 | + ] |
| 53 | + return candidates |
| 54 | + |
| 55 | + def sort(self, query, candidates): |
| 56 | + queries = [query] * len(candidates) |
| 57 | + titles = [c['title'] for c in candidates] |
| 58 | + paras = [c['para'] for c in candidates] |
| 59 | + ranking_score = self.cross_encoder.matching(query=queries, para=paras, title=titles) |
| 60 | + |
| 61 | + answers = [ |
| 62 | + dict( |
| 63 | + title=titles[i], |
| 64 | + para=paras[i], |
| 65 | + score=score, |
| 66 | + ) |
| 67 | + for i, score in enumerate(ranking_score) |
| 68 | + ] |
| 69 | + return sorted(answers, key=lambda a: a['score'], reverse=True) |
| 70 | + |
| 71 | + |
| 72 | +def main(): |
| 73 | + es_client = Elasticsearch( |
| 74 | + "https://localhost:9200", |
| 75 | + http_auth=("elastic", "123456"), |
| 76 | + verify_certs=False, |
| 77 | + ) |
| 78 | + querier = Querier(es_client, "test-index", 'zh_dureader_de_v2', 'zh_dureader_ce_v2') |
| 79 | + |
| 80 | + while True: |
| 81 | + query = input('Query: ') |
| 82 | + |
| 83 | + candidates = querier.search(query) |
| 84 | + print('Candidates:') |
| 85 | + for c in candidates: |
| 86 | + print(c['title'], '\t', c['para']) |
| 87 | + |
| 88 | + answers = querier.sort(query, candidates) |
| 89 | + print('Answers:') |
| 90 | + for a in answers: |
| 91 | + print(a['title'], '\t', a['para'], '\t', a['score']) |
| 92 | + |
| 93 | + |
| 94 | +if __name__ == '__main__': |
| 95 | + main() |
0 commit comments