@@ -14,30 +14,30 @@ def plot_performance(**kwargs):
14
14
15
15
ax1 = fig .add_subplot (221 )
16
16
ax1 .plot (time , total_classifiers , 'b' )
17
- ax1 .plot (time , _filter (total_classifiers , f_reward ), 'ro' , linewidth = 2.0 )
17
+ ax1 .plot (time , _filter (total_classifiers , f_reward ), 'r.' )
18
18
ax1 .set_title ('Total Classifiers' )
19
19
ax1 .set_xlabel ('Time' )
20
20
ax1 .set_ylabel ('Macro-classifiers' )
21
21
ax1 .grid (True )
22
22
23
23
ax2 = fig .add_subplot (222 )
24
24
ax2 .plot (time , avg_quality , 'g' )
25
- ax2 .plot (time , _filter (avg_quality , f_reward ), 'ro' , linewidth = 2.0 )
25
+ ax2 .plot (time , _filter (avg_quality , f_reward ), 'r.' )
26
26
ax2 .set_title ('Quality' )
27
27
ax2 .set_xlabel ('Time' )
28
28
ax2 .set_ylabel ('Quality per classifier' )
29
29
ax2 .grid (True )
30
30
31
31
ax3 = fig .add_subplot (223 )
32
32
ax3 .plot (time , avg_fitness , 'y' )
33
- ax3 .plot (time , _filter (avg_fitness , f_reward ), 'ro' , linewidth = 2.0 )
33
+ ax3 .plot (time , _filter (avg_fitness , f_reward ), 'r.' )
34
34
ax3 .set_title ('Fitness' )
35
35
ax3 .set_xlabel ('Time' )
36
36
ax3 .set_ylabel ('Fitness per classifier' )
37
37
ax3 .grid (True )
38
38
39
39
plt .tight_layout ()
40
- plt .savefig ('learning_progress.png' )
40
+ plt .savefig ('learning_progress.png' , dpi = 200 )
41
41
42
42
43
43
def _filter (metrics : list , mask : list ) -> list :
0 commit comments