-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
244 lines (205 loc) · 12.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import sys
import json
import pprint
import argparse
import numpy as np
import xarray as xr
from warnings import warn
import shapely
import pandas as pd
import geopandas as gpd
os.environ['WANDB_MODE'] = 'disabled'
os.environ['CUBLAS_WORKSPACE_CONFIG'] = '4096:8'
from tqdm import tqdm
from parse_args import create_parser
from scipy.interpolate import interp1d
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
import dask
dask.config.set(scheduler='synchronous')
dirname = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(dirname))
from util import utils, losses
from util.dataLoader import coastalLoader
from util.model_utils import get_model, load_checkpoint
from train import iterate, save_results, prepare_data, prepare_output, seed_packages, seed_worker
parser = create_parser(mode='test')
test_config = parser.parse_args()
# grab the PID so we can look it up in the logged config for server-side process management
test_config.pid = os.getpid()
# load previous config from training directories
# if no custom path to config file is passed, try fetching config file at default location
conf_path = os.path.join(dirname, test_config.weight_folder, test_config.experiment_name, "conf.json") if not test_config.load_config else test_config.load_config
if os.path.isfile(conf_path):
with open(conf_path) as file:
model_config = json.loads(file.read())
t_args = argparse.Namespace()
# do not overwrite the following flags by their respective values in the config file
no_overwrite = ['root', 'pid', 'device', 'resume_at', 'trained_checkp', 'res_dir', 'weight_folder', 'num_workers',
'max_samples_count', 'batch_size', 'display_step', 'export_every', 'input_t', 'lead_time', 'eval_gtsm_pred']
conf_dict = {key:val for key,val in model_config.items() if key not in no_overwrite}
for key, val in vars(test_config).items():
if key in no_overwrite: conf_dict[key] = val
t_args.__dict__.update(conf_dict)
config = parser.parse_args(namespace=t_args)
else: config = test_config # otherwise, keep passed flags without any overwriting
config = utils.str2list(config, ["encoder_widths", "decoder_widths", "out_conv"])
# softly apply changes to parsed arguments, which would otherwise raise errors later on
if config.model in ['lstm', 'conv_lstm']:
if not config.hyperlocal:
warn('A local method was selected together with densification mode. \
Changing to the hyperlocal experimental.')
config.hyperlocal = True
experime_dir = os.path.join(config.res_dir, config.experiment_name)
if not os.path.exists(experime_dir): os.makedirs(experime_dir)
with open(os.path.join(experime_dir, "conf.json"), "w") as file:
file.write(json.dumps(vars(config), indent=4))
# seed everything
seed_packages(config.rdm_seed)
# seed generators for train & val/test dataloaders
f, g = torch.Generator(), torch.Generator()
f.manual_seed(config.rdm_seed + 0) # note: this may get re-seeded each epoch
g.manual_seed(config.rdm_seed) # keep this one fixed
if __name__ == "__main__": pprint.pprint(config)
models = ['utae', 'metnet3', 'lstm', 'conv_lstm']
# note: in addition, the selected model may also be
# 'gtsm', 'extrapolate_gtsm, 'inavg', 'seasonal', 'extrapolate_gesla'
def main(config):
device = torch.device(config.device)
prepare_output(config)
if config.model in models:
only_series = False
model = get_model(config)
model = model.to(device)
model.eval()
config.N_params = utils.get_ntrainparams(model)
print(f"TOTAL TRAINABLE PARAMETERS: {config.N_params}\n")
print(model)
# Load weights
ckpt_n = f'_epoch_{config.resume_at}' if config.resume_at > 0 else ''
load_checkpoint(config, config.weight_folder, model, f"model{ckpt_n}")
elif config.model in ['gtsm', 'extrapolate_gtsm']:
only_series = False
elif config.model in ['inavg', 'seasonal', 'extrapolate_gesla']:
only_series = True
else: raise NotImplementedError
cozy_printing = ['densification', 'hyperlocal']
print(f'Testing {config.model} in {cozy_printing[config.hyperlocal]} evaluation mode.')
root = os.path.expanduser(config.root)
stats_file = os.path.join(root, 'aux', 'stats.npy')
splits_file = os.path.join(root, 'aux', 'splits_ids.npy')
ibtracs_file = os.path.join(root, 'aux', 'stats_ibtracs.npy')
stats_data = None if not os.path.isfile(stats_file) else np.load(stats_file, allow_pickle='TRUE').item()
splits_ids = None if not os.path.isfile(splits_file) else np.load(splits_file, allow_pickle='TRUE').item()
stats_ibtracs = None if not os.path.isfile(ibtracs_file) else np.load(ibtracs_file, allow_pickle='TRUE').item()
dt_test = coastalLoader(root, split='test', hyperlocal=config.hyperlocal, splits_ids=splits_ids, stats=stats_data, stats_ibtracs=stats_ibtracs, input_len=config.input_t, drop_in=0.0, context_window=config.context, res=config.res, lead_time=config.lead_time, center_gauge=config.center_gauge, only_series=only_series, no_gesla_context=config.no_gesla_context, seed=2)
sub_dt_test = torch.utils.data.Subset(dt_test, range(0, min(config.max_samples_count, len(dt_test))))
test_loader = torch.utils.data.DataLoader(sub_dt_test,
batch_size=config.batch_size,
shuffle=False,
worker_init_fn=seed_worker,
generator=g,
num_workers=config.num_workers)
print('Loading GESLA dataset into memory')
ncGESLA = xr.open_dataset(filename_or_obj=os.path.join(root, 'combined_gesla_surge.nc'), engine='netcdf4').load()
train_points = [tuple(point) for pdx, point in enumerate(zip(ncGESLA.longitude.values, ncGESLA.latitude.values)) if ncGESLA.isel(station=pdx).station.values in dt_test.splits_ids['train']]
gesla_points = gpd.GeoDataFrame(geometry=shapely.points(coords=train_points))
# Inference
print("Testing . . .")
pred, targ, dist, context_n, coords = [], [], [], [], []
for batch in tqdm(test_loader):
if config.model in models:
x, y, in_m, dates, lead = prepare_data(batch, device, config)
inputs = {'A': x, 'B': y, 'dates': dates, 'masks': in_m, 'lead': lead}
with torch.no_grad():
# compute mean predictions
model.set_input(inputs)
model.forward()
model.get_loss_G()
out = model.fake_B
if config.use_series_target:
preds = out
else:
if config.eval_gtsm_pred:
out = out[:, :, -1, ...]
else:
out = out[:, :, 0, ...]
validity_mask = ~np.isnan(batch['target']['sparse']).bool()
preds = out[validity_mask]
if config.model == 'gtsm': # forced by future ERA5 reanalysis
# target data is [B x 1 x H x W]
validity_mask = ~np.isnan(batch['target']['sparse']).bool()
sparse_values = batch['target']['sparse'][validity_mask]
out = batch['target']['gtsm_out_unmasked']
preds = out[validity_mask]
if config.model == "extrapolate_gtsm": # extrapolating from input time series
validity_mask = ~np.isnan(batch['target']['sparse']).bool()
sparse_values = batch['target']['sparse'][validity_mask]
t_times_mask = validity_mask[:,None,...].expand(-1,config.input_t,-1,-1,-1)
preds = []
for bdx, bitem in enumerate(batch['input']['gtsm'].squeeze()): # iterate over current batch items
try:
interpolator = interp1d(np.arange(config.input_t), bitem[t_times_mask[bdx,:,0,...]], kind='linear', axis=-1, fill_value="extrapolate") # bitem is T x H x W
inter = interpolator(np.arange(config.input_t + config.lead_time))[-1]
preds.append(inter)
except: continue
preds = torch.tensor(preds).float()
impute = False
if config.model == "extrapolate_gesla":
validity_mask = ~np.isnan(batch['target']['series']).bool()
preds = np.array([interp1d(np.arange(config.input_t), bitem, kind='linear', axis=-1, fill_value="extrapolate")(np.arange(config.input_t + config.lead_time))[-1] for bitem in batch['input']['series'].squeeze()])
if config.model == 'seasonal':
validity_mask = ~np.isnan(batch['target']['series']).bool()
dates = np.array([[pd.to_datetime(batch_item).values[-1] + np.timedelta64(config.lead_time,'h') for batch_item in batch['input']['dates2int']]])[0]
prevYearsMonth = [ncGESLA.sel(station=batch['target']['id'][ddx], date_time=ncGESLA.date_time.dt.month.isin([int(str(dates[0])[6])])).sel(date_time=slice(ncGESLA.date_time[0], ditem)) for ddx, ditem in enumerate(dates)]
preds = np.array([np.nanmean(periods.sea_level.values) for periods in prevYearsMonth])
impute = np.isnan(preds).sum() > 0 # NaNs in prediction can appear depending on record length of current GESLA gauge, in this case impute missing values via 'inavg' baseline
if config.model == 'inavg' or impute:
validity_mask = ~np.isnan(batch['target']['series']).bool()
dates_a = np.array([[pd.to_datetime(batch_item).values[0] for batch_item in batch['input']['dates2int']]])[0]
dates_b = np.array([[pd.to_datetime(batch_item).values[-1] for batch_item in batch['input']['dates2int']]])[0]
intervals = [ncGESLA.sel(date_time=slice(dates_a[bdx], dates_b[bdx]), station=station) for bdx, station in enumerate(batch['target']['id'])]
if impute:
# impute missing values of another method's preceding predictions
preds[np.isnan(preds)] = torch.Tensor([np.nanmean(gesla.sea_level.values) for gesla in intervals])[np.isnan(preds)]
else:
preds = torch.Tensor([np.nanmean(gesla.sea_level.values) for gesla in intervals])
if only_series or config.use_series_target:
sparse_values = batch['target']['series'].squeeze()
lon, lat = batch['input']['lon'].numpy(), batch['input']['lat'].numpy()
else:
sparse_values = batch['target']['sparse'][validity_mask].squeeze()
lon, lat = batch['target']['lon_gauge'].numpy(), batch['target']['lat_gauge'].numpy()
# for each target sample, collect its distance to the closest train split gauge
target_p = [tuple(point) for pdx, point in enumerate(zip(lon, lat)) if pdx < torch.numel(sparse_values)]
target_points = gpd.GeoDataFrame(geometry=shapely.points(coords=target_p))
dist_mat = gesla_points.geometry.apply(lambda g: target_points.distance(g))
closest_idx = np.argmin(dist_mat, axis=0)
closest_dist = dist_mat.iloc[closest_idx, :].values[np.eye(len(target_points), dtype=bool)]
coords += target_p
targ += sparse_values.tolist()
pred += preds.tolist()
dist += closest_dist.tolist()
if 'valid_mask' in batch['input']:
context_n += batch['input']['valid_mask'].sum(-1).sum(-1)[...,-1].mean(-1).int()[:torch.numel(sparse_values)].tolist()
# compute summary statistics across the entire split
pred, targ = torch.tensor(pred).squeeze(), torch.tensor(targ).squeeze()
mean_mae = torch.nanmean(torch.nn.functional.l1_loss(targ, pred, reduction='none'))
mean_mse = torch.nanmean(torch.nn.functional.mse_loss(targ, pred, reduction='none'))
std_mae = np.nanstd(torch.nn.functional.l1_loss(targ, pred, reduction='none'))
std_mse = np.nanstd(torch.nn.functional.mse_loss(targ, pred, reduction='none'))
nnse = losses.nnse(np.array(targ), np.array(pred))
print(f'Standardized {config.model}: MAE {mean_mae} ({std_mae}), MSE {mean_mse} ({std_mse}), NNSE {nnse}')
m_targ = dt_test.stats['std']['GESLA'] * targ + dt_test.stats['mean']['GESLA']
m_pred = dt_test.stats['std']['GTSM'] * pred + dt_test.stats['mean']['GTSM']
mean_mae = torch.nanmean(torch.nn.functional.l1_loss(m_targ, m_pred, reduction='none'))
mean_mse = torch.nanmean(torch.nn.functional.mse_loss(m_targ, m_pred, reduction='none'))
std_mae = np.nanstd(torch.nn.functional.l1_loss(m_targ, m_pred, reduction='none'))
std_mse = np.nanstd(torch.nn.functional.mse_loss(m_targ, m_pred, reduction='none'))
m_nnse = losses.nnse(np.array(m_targ), np.array(m_pred))
print(f'm-units {config.model}: MAE {mean_mae} ({std_mae}), MSE {mean_mse} ({std_mse}), NNSE {m_nnse}')
print(f'Statistics: {dt_test.stats}')
if __name__ == "__main__":
main(config)
exit()