-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbuddy.c
375 lines (291 loc) · 11.8 KB
/
buddy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
* buddy.c
*
* Created on: 18/08/2021
* Author: Paulo Almeida
*/
#include "kernel/mm/buddy.h"
#include "kernel/compiler/macro.h"
#include "kernel/compiler/bug.h"
#include "kernel/lib/printk.h"
#include "kernel/lib/math.h"
#include "kernel/lib/string.h"
#include "kernel/lib/bit.h"
typedef enum {
UNUSED,
SPLIT,
USED,
} slot_type_t;
typedef struct {
uint64_t base_addr;
uint8_t pow_order;
slot_type_t type;
} buddy_slot_t;
uint64_t buddy_calc_header_space(uint64_t mem_space) {
BUG_ON(mem_space != flp2(mem_space));
int max_k = ilog2(mem_space);
int min_k = ilog2(BUDDY_ALLOC_SMALLEST_BLOCK);
return (upow(2, (max_k - min_k) + 1)) * sizeof(buddy_slot_t);
}
static uint64_t goto_porder_idx(buddy_ref_t *ref, uint8_t pow_order) {
uint64_t offset_addr = upow(2, (ref->max_pow_order - (ref->min_pow_order - 1)))
- upow(2, ref->max_pow_order - pow_order + 1);
return ref->header_mem_reg.base_addr + (offset_addr * sizeof(buddy_slot_t));
}
__force_inline static buddy_slot_t* goto_parent(buddy_ref_t *ref, buddy_slot_t *child) {
uint64_t arr_pos = ((uintptr_t) child - goto_porder_idx(ref, child->pow_order)) / sizeof(buddy_slot_t);
clear_bit(0, arr_pos);
return ((buddy_slot_t*) goto_porder_idx(ref, child->pow_order + 1)) + (arr_pos / 2);
}
__force_inline static buddy_slot_t* goto_left_child(buddy_ref_t *ref, buddy_slot_t *parent) {
uint64_t arr_pos = ((uintptr_t) parent - goto_porder_idx(ref, parent->pow_order)) / sizeof(buddy_slot_t);
return ((buddy_slot_t*) goto_porder_idx(ref, parent->pow_order - 1)) + (arr_pos * 2);
}
__force_inline static buddy_slot_t* goto_right_child(buddy_ref_t *ref, buddy_slot_t *parent) {
uint64_t arr_pos = ((uintptr_t) parent - goto_porder_idx(ref, parent->pow_order)) / sizeof(buddy_slot_t);
return ((buddy_slot_t*) goto_porder_idx(ref, parent->pow_order - 1)) + (arr_pos * 2) + 1;
}
__force_inline static buddy_slot_t* goto_sibling(buddy_ref_t *ref, buddy_slot_t *node) {
uint64_t arr_pos = ((uintptr_t) node - goto_porder_idx(ref, node->pow_order)) / sizeof(buddy_slot_t);
buddy_slot_t *ret = node;
if (arr_pos % 2 == 0)
ret++;
else
ret--;
return ret;
}
__force_inline static uint64_t n_of_entries(buddy_ref_t *ref, uint8_t pow_order) {
return upow(2, ref->max_pow_order) / upow(2, pow_order);
}
__force_inline static bool is_entry_empty(buddy_slot_t *idx) {
return idx->base_addr == 0 && idx->pow_order == 0;
}
buddy_ref_t buddy_init(mem_map_region_t h_mem_reg, mem_map_region_t c_mem_reg) {
BUG_ON(c_mem_reg.length != flp2(c_mem_reg.length));
uint8_t max_pow_order = ilog2(c_mem_reg.length);
buddy_ref_t ref = {
.header_mem_reg = h_mem_reg,
.content_mem_reg = c_mem_reg,
.max_pow_order = max_pow_order,
.min_pow_order = ilog2(BUDDY_ALLOC_SMALLEST_BLOCK)
};
memzero((void*) h_mem_reg.base_addr, h_mem_reg.length);
buddy_slot_t *ptr = (buddy_slot_t*) goto_porder_idx(&ref, max_pow_order);
buddy_slot_t largest_slot = {
.base_addr = c_mem_reg.base_addr,
.pow_order = max_pow_order,
.type = UNUSED
};
*ptr = largest_slot;
return ref;
}
static buddy_slot_t* find_free_slot(buddy_ref_t *ref, uint8_t pow_order) {
buddy_slot_t *ret = NULL;
buddy_slot_t *idx = (buddy_slot_t*) goto_porder_idx(ref, pow_order);
uint64_t n_entries = n_of_entries(ref, pow_order);
for (size_t i = 0; i < n_entries; i++) {
buddy_slot_t *tmp = (idx + i);
if (!is_entry_empty(tmp) && tmp->type == UNUSED) {
ret = tmp;
break;
}
}
return ret;
}
static void insert_child_slot(buddy_ref_t *ref, buddy_slot_t *parent, buddy_slot_t *child) {
buddy_slot_t *idx;
if (parent->base_addr == child->base_addr) {
idx = goto_left_child(ref, parent);
} else {
idx = goto_right_child(ref, parent);
}
memcpy(idx, child, sizeof(buddy_slot_t));
}
uintptr_t buddy_alloc(buddy_ref_t *ref, uint64_t bytes) {
BUG_ON(bytes == 0 || bytes > ref->content_mem_reg.length);
uint8_t k_order = ilog2(clp2(bytes));
/* sanity check */
if (k_order < ref->min_pow_order)
k_order = ref->min_pow_order;
bool found = false;
uintptr_t ptr = 0;
uint8_t tmp_k_order = k_order;
while (true) {
buddy_slot_t *idx = find_free_slot(ref, tmp_k_order);
if (!idx) {
/* we've exausted all possibilities, simply there is no memory left */
if (tmp_k_order == ref->max_pow_order)
break;
/* nothing found in this k_order, we need to split a higher order blk */
tmp_k_order++;
} else if (idx->pow_order > k_order) {
/* split and insert */
buddy_slot_t left = {
.base_addr = idx->base_addr,
.pow_order = idx->pow_order - 1,
.type = UNUSED
};
buddy_slot_t right = {
.base_addr = idx->base_addr + upow(2, idx->pow_order - 1),
.pow_order = idx->pow_order - 1,
.type = UNUSED
};
insert_child_slot(ref, idx, &left);
insert_child_slot(ref, idx, &right);
/* remove higher one (old) */
idx->type = SPLIT;
/* now that the split happened, try to acquire the one we are after */
tmp_k_order--;
} else {
/* we found the perfect fit \o/ */
idx->type = USED;
found = true;
ptr = idx->base_addr;
break;
}
}
BUG_ON(!found);
return ptr;
}
static buddy_slot_t* find_slot_by_addr(buddy_ref_t *ref, uintptr_t ptr) {
buddy_slot_t *slot_found = NULL;
buddy_slot_t *idx = (buddy_slot_t*) goto_porder_idx(ref, ref->max_pow_order);
while (idx->pow_order >= ref->min_pow_order) {
if (idx->type == UNUSED)
break; // fail-fast
else if (ptr >= idx->base_addr && ptr <= (idx->base_addr + (upow(2, idx->pow_order) / 2) - 1)) {
if (idx->type == SPLIT) {
idx = goto_left_child(ref, idx);
} else if (idx->type == USED) {
slot_found = idx;
break;
}
} else {
if (idx->type == SPLIT) {
idx = goto_right_child(ref, idx);
} else if (idx->type == USED) {
slot_found = idx;
break;
}
}
}
BUG_ON(!slot_found);
return slot_found;
}
void buddy_free(buddy_ref_t *ref, uintptr_t ptr) {
/* sanity check */
BUG_ON(!ptr);
/* free the slot */
buddy_slot_t *ptr_slot = find_slot_by_addr(ref, ptr);
ptr_slot->type = UNUSED;
/* check if its buddy is also free so we can merge them */
while (ptr_slot->pow_order < ref->max_pow_order) {
/* find the buddy */
buddy_slot_t *sibling_slot = goto_sibling(ref, ptr_slot);
/* if it's still used or split then party is over */
if (sibling_slot->type != UNUSED)
break;
/* we can merge this one */
buddy_slot_t *large_slot = goto_parent(ref, ptr_slot);
large_slot->type = UNUSED;
memzero(ptr_slot, sizeof(buddy_slot_t));
memzero(sibling_slot, sizeof(buddy_slot_t));
/* feed the logic for higher pow orders recurrence */
ptr_slot = large_slot;
}
}
void buddy_pre_alloc(buddy_ref_t *ref, uint64_t base_addr, uint64_t length) {
printk_debug("base_addr 0x%.16llx length 0x%.16llx", base_addr, length);
/* sanity checks */
BUG_ON(length == 0
|| length > ref->content_mem_reg.length
|| base_addr < ref->content_mem_reg.base_addr);
length = round_up_po2(length, BUDDY_ALLOC_SMALLEST_BLOCK);
if (length != clp2(length)) {
/* we may need to break this up to fulfill the request and save space */
uint64_t req_1_length = flp2(length);
buddy_pre_alloc(ref, base_addr, req_1_length);
buddy_pre_alloc(ref, base_addr + req_1_length, length - req_1_length);
/* work was distributed to the previous recurssive calls */
return;
}
uint8_t k_order = ilog2(length);
if (k_order < ref->min_pow_order)
k_order = ref->min_pow_order;
uint64_t cur_k_order_length = 0;
uint64_t next_k_order_length = 0;
buddy_slot_t *idx = (buddy_slot_t*) goto_porder_idx(ref, ref->max_pow_order);
while (true) {
cur_k_order_length = upow(2, idx->pow_order);
next_k_order_length = upow(2, idx->pow_order - 1);
if (base_addr >= idx->base_addr && (base_addr + length) <= (idx->base_addr + cur_k_order_length)) {
if (idx->pow_order > k_order) {
if (idx->type == UNUSED) {
/* split and insert */
buddy_slot_t left = {
.base_addr = idx->base_addr,
.pow_order = idx->pow_order - 1,
.type = UNUSED
};
buddy_slot_t right = {
.base_addr = idx->base_addr + next_k_order_length,
.pow_order = idx->pow_order - 1,
.type = UNUSED
};
insert_child_slot(ref, idx, &left);
insert_child_slot(ref, idx, &right);
/* remove higher one (old) */
idx->type = SPLIT;
if (base_addr >= idx->base_addr
&& (base_addr + length) <= (idx->base_addr + next_k_order_length)) {
idx = goto_left_child(ref, idx);
} else if (base_addr >= (idx->base_addr + next_k_order_length)) {
idx = goto_right_child(ref, idx);
} else {
/* Darn it.. there is an overlapping between requested and allocated blocks */
goto overlapping_block;
}
} else if (idx->type == SPLIT) {
if ((base_addr + length) <= (idx->base_addr + next_k_order_length)) {
idx = goto_left_child(ref, idx);
} else if (base_addr >= (idx->base_addr + next_k_order_length)) {
idx = goto_right_child(ref, idx);
} else {
/* Darn it.. there is an overlapping between requested and allocated blocks */
goto overlapping_block;
}
} else if (idx->type == USED) {
/* job seems to be done already...so don't bother */
printk_info(
"block already marked as used: base_addr 0x%.16llx length 0x%.16llx "
"idx->base_addr 0x%.16llx length 0x%.16llx",
base_addr, length,
idx->base_addr, cur_k_order_length
);
return;
}
} else if (idx->pow_order == k_order) {
BUG_ON(idx->type != UNUSED);
/* perfect fit (go celebrate it) */
idx->type = USED;
return;
}
}
}
overlapping_block:
/*
* Scratchpad:
*
* 0x1fe_000 -> 0x4_1fe_000 (0x4_000_000)
* -> 0x1fe_000 -> 0x4_000_000
* -> 0x4_000_000 -> 0x4_1fe_000
*
* 0xfff_1fe_000 -> 0xfff_4_1fe_000 (0x4_000_000)
* -> 0xfff_1fe_000 -> 0xfff_4_000_000
* -> 0xfff_4_000_000 -> 0xfff_4_1fe_000
*
*/
buddy_pre_alloc(ref, base_addr, (idx->base_addr + next_k_order_length) - base_addr);
buddy_pre_alloc(ref, (idx->base_addr + next_k_order_length),
(base_addr + length) - (idx->base_addr + next_k_order_length));
}