-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeso_beam_frequency_geometry02.m
282 lines (188 loc) · 7.44 KB
/
beso_beam_frequency_geometry02.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
%% cleaning
clc; clear; close all
%% coordinate matrix
nx = 21; % nodes number in x
Lx = 20; % length in x [m]
ex = nx - 1; % element number in x
L = Lx/ex;
coordx = linspace(0,Lx,nx); % coordinate in x
num = 1:nx; % number of nodes
coord = [num(:),coordx(:)]; % coordinate matrix
%% code variables
m_disc = 1000;
I_disc = 1000;
node_disc = nx;
%% incidence matrix
inci = zeros(ex,4); % incidence matrix pre-location
for i = 1 : ex
inci(i,:) = [i coord(i,1) coord(i+1,1) 6];
end
%% boundary conditions matrix
bc(1,:) = [ coord(1,1), 1, 0];
bc(2,:) = [ coord(1,1), 2, 0];
%% material matrix
%E rho nu
material = [2e11 7800 0.3]; % [Pa] [kg/m3] []
%% geometry
area = linspace(0.5, 1.5, 11);
%% solver
nnodes = size(coord,1); % number of nodes
alldof = 1:nnodes*2; % degrees of freedom
nel = size(inci,1); % number of elements
kg = zeros(2*nnodes); % global stiffness matrix pre-location
mg = zeros(2*nnodes); % global mass matrix pre-location
figure('Name','Geometry','NumberTitle','off');
xlim([0 Lx])
ylim([-5 5])
hold on
d = area(inci(:,4));
step=0;
for i=1:nel
rectangle('Position',[0+step -d(i) L/nel 2*d(i)],'FaceColor','b')
step=step+L/nel;
end
for i = 1 : nel % global stiffness matrix
no1 = inci(i,2); % first node element
no2 = inci(i,3); % second node element
E = material(1,1); % young's module
rho = material(1,2); % density
A = area(inci(i,4))*1;
I = A/(4*pi);
ke = E*I/(L^3)*[12 6*L -12 6*L;
6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2];
me = rho*A*L/420*[156 22*L 54 -13*L;
22*L 4*L^2 13*L -3*L^2;
54 13*L 156 -22*L;
-13*L -3*L^2 -22*L 4*L^2];
loc = [no1*2-1 no1*2 no2*2-1 no2*2]; % localization vector
kg(loc,loc) = kg(loc,loc) + ke; % global stiffness matrix assemble
mg(loc,loc) = mg(loc,loc) + me; % global stiffness matrix assemble
end
freedof = alldof;
for k = 1 : size(bc,1) % degrees of freedom
freedof(2*bc(k,1)-(2-bc(k,2))) = 0;
end
%% Adding mass to the mass matrix
loc_node_disc = [2*node_disc-1 2*node_disc];
mg(loc_node_disc(1),loc_node_disc(1)) = mg(loc_node_disc(1),loc_node_disc(1)) + m_disc; % global stiffness matrix assemble
mg(loc_node_disc(2),loc_node_disc(2)) = mg(loc_node_disc(2),loc_node_disc(2)) + I_disc; % global stiffness matrix assemble
%% BESO parameters
tau = 0.1/100;
mode = 1; % mode
iter = 0 ; % iteration counter
frequency = zeros(100,3);
conv = 0;
while conv == 0
iter = iter + 1;
kg_aux = (kg(logical(freedof),logical(freedof))); % column & rows elimination
mg_aux = (mg(logical(freedof),logical(freedof))); % column & rows elimination
[eig_vector,eig_value] = eig(kg_aux,mg_aux); %eig_vector = vibration mode
eig_value = sum(eig_value);
eig_aux = [eig_value;eig_vector]';
eig_aux = sortrows(eig_aux,1);
remove = eig_aux(:,1) > 0;
eig_aux = eig_aux(remove,:);
omega = sqrt(eig_aux(1:3,1))/(2*pi);
frequency(iter,:) = omega;
eig_vector = eig_aux(mode,2:end)';
eig_vector_aux = zeros(size(kg,1),1);
eig_vector_aux(logical(freedof),1) = eig_vector;
alpha_elemental = zeros(nel,2); % sensivity number vector
alpha_elemental(:,1) = 1:nel;
for i = 1 : nel
no1 = inci(i,2); % first node element
no2 = inci(i,3); % second node element
loc = [no1*2-1 no1*2 no2*2-1 no2*2]; % localization vector
u_aux = eig_vector_aux(loc);
A = area(inci(i,4))*0.1;
I = A/(4*pi);
ke_i = E*I/(L^3)*[12 6*L -12 6*L;
6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2];
me_i = rho*A*L/420*[156 22*L 54 -13*L;
22*L 4*L^2 13*L -3*L^2;
54 13*L 156 -22*L;
-13*L -3*L^2 -22*L 4*L^2];
alpha_elemental(i,2) = -u_aux'*(eig_value(mode)*me_i-ke_i)*u_aux;
end
alpha_aux = sortrows(alpha_elemental,-2);
bigger = alpha_aux(1:4,:);
for i = 1 : 4
if inci(bigger(i,1),4) < 10
inci(bigger(i,1),4) = inci(bigger(i,1),4) + 1;
no1 = inci(bigger(i,1),2); % first node element
no2 = inci(bigger(i,1),3); % second node element
loc = [no1*2-1 no1*2 no2*2-1 no2*2]; % localization vector
A = area(inci(bigger(i,1),4))*1;
I = A/(4*pi);
ke_i = E*I/(L^3)*[12 6*L -12 6*L;
6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2];
me_i = rho*A*L/420*[156 22*L 54 -13*L;
22*L 4*L^2 13*L -3*L^2;
54 13*L 156 -22*L;
-13*L -3*L^2 -22*L 4*L^2];
kg(loc,loc) = kg(loc,loc) - ke + ke_i; % global stiffness matrix assemble
mg(loc,loc) = mg(loc,loc) - me + me_i; % global stiffness matrix assemble
end
end
if sum(area(inci(:,4))) > 20
lower = alpha_aux(nel-3:nel,:);
for i = 1 : 4
if inci(lower(i,1),4) > 1
inci(lower(i,1),4) = inci(lower(i,1),4) - 1;
no1 = inci(lower(i,1),2); % first node element
no2 = inci(lower(i,1),3); % second node element
loc = [no1*2-1 no1*2 no2*2-1 no2*2]; % localization vector
A = area(inci(lower(i,1),4))*1;
I = A/(4*pi);
ke_i = E*I/(L^3)*[12 6*L -12 6*L;
6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2];
me_i = rho*A*L/420*[156 22*L 54 -13*L;
22*L 4*L^2 13*L -3*L^2;
54 13*L 156 -22*L;
-13*L -3*L^2 -22*L 4*L^2];
kg(loc,loc) = kg(loc,loc) - ke + ke_i; % global stiffness matrix assemble
mg(loc,loc) = mg(loc,loc) - me + me_i; % global stiffness matrix assemble
end
end
end
if iter > 1
error = (frequency(iter, mode) - frequency(iter-1, mode))/frequency(iter, mode);
if error < tau
conv = 1;
end
end
end
% figure('Name','Geometry','NumberTitle','off');
% xlim([0 Lx])
% ylim([-5 5])
% hold on
d = area(inci(:,4));
step=0;
color=gray(length(area));
for i=1:nel
color1=color(inci(i,4),:);
rectangle('Position',[0+step -d(i) Lx/nel 2*d(i)],'FaceColor',color1)
step=step+Lx/nel;
end
hold off
iter = 1 : iter;
frequency = frequency(iter,:);
figure('Name','Frequencies','NumberTitle','off');
hold on
plot(frequency(:,1),'-o')
plot(frequency(:,2),'-^')
plot(frequency(:,3),'k-x')
xlabel('Iterations')
ylabel('Frequency (Hz)')
legend({'1st Frequency','2nd Frequency','3rd Frequency'})
title('Frequencies by iterations')
grid on
grid minor