-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChildren.v
65 lines (42 loc) · 1.6 KB
/
Children.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Module Type MChildren.
(* 一人の子供の型 *)
Parameter child : Set.
(* childの有限集合の型 *)
Parameter cset : Set.
Axiom exists_dec : forall (P: child -> Prop) (f:forall c, {P c}+{~P c}),
{exists c, P c}+{forall c, ~P c}.
Parameter filter : (child -> bool) -> cset -> cset.
Parameter In : child -> cset -> Prop.
Definition Subset xs ys := forall x, In x xs -> In x ys.
Axiom filter2_subset : forall f g xs,
(forall x, f x = true -> g x = true) ->
Subset (filter f xs) (filter g xs).
Parameter size : cset -> nat.
Axiom size_in : forall xs ys,
Subset xs ys -> size xs <= size ys.
Axiom filter_length_lt : forall f g xs,
(exists x, In x xs /\ f x <> true /\ g x = true) ->
Subset (filter f xs) (filter g xs) ->
size (filter f xs) < size (filter g xs).
Parameter empty : cset.
Axiom empty_in : forall c, ~In c empty.
Parameter add : child -> cset -> cset.
Axiom add_in : forall c0 c1 cs, In c0 (add c1 cs) -> c0 = c1 \/ In c0 cs.
(* 帰納法の原理 *)
Axiom ind : forall (P : cset -> Type),
(P empty) ->
(forall x xs, P xs -> P (add x xs)) ->
forall cs, P cs.
Definition fold {A:Set} (f: child -> A -> A) (cs : cset) (a:A) : A :=
ind (fun _ => A) a (fun c cs reccall => f c reccall) cs.
Axiom fold_empty : forall {A:Set} f (a:A),
fold f empty a = a.
Axiom fold_step : forall {A:Set} f (a:A) c cs,
(forall x y, f x (f y a) = f y (f x a)) ->
fold f (add c cs) a = f c (fold f cs a).
(* 少なくとも一人は存在する。 *)
Parameter c0 : child.
(* すべての子供たち *)
Parameter children : cset.
Axiom children_finite : forall c, In c children.
End MChildren.