Skip to content

Commit 3e07d3b

Browse files
authored
FIX: FutureWarning in heavy_tails (#581)
* FIX: FutureWarning in heavy_tails * Update lectures/heavy_tails.md * minor typo * fix install of wbgapi * fix cntry_mapper
1 parent 58c4952 commit 3e07d3b

File tree

1 file changed

+15
-18
lines changed

1 file changed

+15
-18
lines changed

lectures/heavy_tails.md

+15-18
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.16.1
7+
jupytext_version: 1.16.7
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -19,7 +19,7 @@ In addition to what's in Anaconda, this lecture will need the following librarie
1919
```{code-cell} ipython3
2020
:tags: [hide-output]
2121
22-
!pip install --upgrade yfinance pandas_datareader
22+
!pip install --upgrade yfinance wbgapi
2323
```
2424

2525
We use the following imports.
@@ -31,7 +31,7 @@ import yfinance as yf
3131
import pandas as pd
3232
import statsmodels.api as sm
3333
34-
from pandas_datareader import wb
34+
import wbgapi as wb
3535
from scipy.stats import norm, cauchy
3636
from pandas.plotting import register_matplotlib_converters
3737
register_matplotlib_converters()
@@ -790,24 +790,21 @@ def empirical_ccdf(data,
790790
:tags: [hide-input]
791791
792792
def extract_wb(varlist=['NY.GDP.MKTP.CD'],
793-
c='all_countries',
793+
c='all',
794794
s=1900,
795795
e=2021,
796796
varnames=None):
797-
if c == "all_countries":
798-
# Keep countries only (no aggregated regions)
799-
countries = wb.get_countries()
800-
countries_name = countries[countries['region'] != 'Aggregates']['name'].values
801-
c = "all"
802797
803-
df = wb.download(indicator=varlist, country=c, start=s, end=e).stack().unstack(0).reset_index()
804-
df = df.drop(['level_1'], axis=1).transpose()
798+
df = wb.data.DataFrame(varlist, economy=c, time=range(s, e+1, 1), skipAggs=True)
799+
df.index.name = 'country'
800+
805801
if varnames is not None:
806-
df.columns = varnames
807-
df = df[1:]
802+
df.columns = variable_names
803+
804+
cntry_mapper = pd.DataFrame(wb.economy.info().items)[['id','value']].set_index('id').to_dict()['value']
805+
df.index = df.index.map(lambda x: cntry_mapper[x]) #map iso3c to name values
808806
809-
df1 =df[df.index.isin(countries_name)]
810-
return df1
807+
return df
811808
```
812809

813810
### Firm size
@@ -914,9 +911,9 @@ variable_code = ['NY.GDP.MKTP.CD', 'NY.GDP.PCAP.CD']
914911
variable_names = ['GDP', 'GDP per capita']
915912
916913
df_gdp1 = extract_wb(varlist=variable_code,
917-
c="all_countries",
918-
s="2021",
919-
e="2021",
914+
c="all",
915+
s=2021,
916+
e=2021,
920917
varnames=variable_names)
921918
df_gdp1.dropna(inplace=True)
922919
```

0 commit comments

Comments
 (0)