-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
web_demo.py
executable file
·209 lines (165 loc) · 7.34 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""A simple web interactive chat demo based on gradio."""
import os
from argparse import ArgumentParser
import gradio as gr
import mdtex2html
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
DEFAULT_CKPT_PATH = 'Qwen/Qwen-7B-Chat'
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--share", action="store_true", default=False,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def _load_model_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
device_map=device_map,
trust_remote_code=True,
resume_download=True,
).eval()
config = GenerationConfig.from_pretrained(
args.checkpoint_path, trust_remote_code=True, resume_download=True,
)
return model, tokenizer, config
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert(message),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def _gc():
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _launch_demo(args, model, tokenizer, config):
def predict(_query, _chatbot, _task_history):
print(f"User: {_parse_text(_query)}")
_chatbot.append((_parse_text(_query), ""))
full_response = ""
for response in model.chat_stream(tokenizer, _query, history=_task_history, generation_config=config):
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
yield _chatbot
full_response = _parse_text(response)
print(f"History: {_task_history}")
_task_history.append((_query, full_response))
print(f"Qwen-Chat: {_parse_text(full_response)}")
def regenerate(_chatbot, _task_history):
if not _task_history:
yield _chatbot
return
item = _task_history.pop(-1)
_chatbot.pop(-1)
yield from predict(item[0], _chatbot, _task_history)
def reset_user_input():
return gr.update(value="")
def reset_state(_chatbot, _task_history):
_task_history.clear()
_chatbot.clear()
_gc()
return _chatbot
with gr.Blocks() as demo:
gr.Markdown("""\
<p align="center"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" style="height: 80px"/><p>""")
gr.Markdown("""<center><font size=8>Qwen-Chat Bot</center>""")
gr.Markdown(
"""\
<center><font size=3>This WebUI is based on Qwen-Chat, developed by Alibaba Cloud. \
(本WebUI基于Qwen-Chat打造,实现聊天机器人功能。)</center>""")
gr.Markdown("""\
<center><font size=4>
Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>  |
Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>  |
Qwen-14B <a href="https://modelscope.cn/models/qwen/Qwen-14B/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-14B">🤗</a>  |
Qwen-14B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-14B-Chat/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen-14B-Chat">🤗</a>  |
 <a href="https://github.com/QwenLM/Qwen">Github</a></center>""")
chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height")
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
empty_btn = gr.Button("🧹 Clear History (清除历史)")
submit_btn = gr.Button("🚀 Submit (发送)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
submit_btn.click(reset_user_input, [], [query])
empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
demo.queue().launch(
share=args.share,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,
)
def main():
args = _get_args()
model, tokenizer, config = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer, config)
if __name__ == '__main__':
main()