-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathhelperfunctions.py
executable file
·596 lines (523 loc) · 21.3 KB
/
helperfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import cv2
from itertools import chain
from skimage import draw
from scipy.ndimage import distance_transform_edt as distance
EPS = 1e-40
# Helper classes
class my_ellipse():
def __init__(self, param):
'''
Accepts parameterized form
'''
self.EPS = 1e-3
if param is not list:
self.param = param
self.mat = self.param2mat(self.param)
self.quad = self.mat2quad(self.mat)
#self.Phi = self.recover_Phi()
def param2mat(self, param):
cx, cy, a, b, theta = tuple(param)
H_rot = rotation_2d(-theta)
H_trans = trans_2d(-cx, -cy)
A, B = 1/a**2, 1/b**2
Q = np.array([[A, 0, 0], [0, B, 0], [0, 0, -1]])
mat = H_trans.T @ H_rot.T @ Q @ H_rot @ H_trans
return mat
def mat2quad(self, mat):
assert np.sum(np.abs(mat.T - mat)) <= self.EPS, 'Conic form incorrect'
a, b, c, d, e, f = mat[0,0], 2*mat[0, 1], mat[1,1], 2*mat[0, 2], 2*mat[1, 2], mat[-1, -1]
return np.array([a, b, c, d, e, f])
def quad2param(self, quad):
mat = self.quad2mat(quad)
param = self.mat2param(mat)
return param
def quad2mat(self, quad):
a, b, c, d, e, f = tuple(quad)
mat = np.array([[a, b/2, d/2], [b/2, c, e/2], [d/2, e/2, f]])
return mat
def mat2param(self, mat):
assert np.sum(np.abs(mat.T - mat)) <= self.EPS, 'Conic form incorrect'
# Estimate rotation
theta = self.recover_theta(mat)
# Estimate translation
tx, ty = self.recover_C(mat)
# Invert translation and rotation
H_rot = rotation_2d(theta)
H_trans = trans_2d(tx, ty)
mat_norm = H_rot.T @ H_trans.T @ mat @ H_trans @ H_rot
major_axis = np.sqrt(1/mat_norm[0,0])
minor_axis = np.sqrt(1/mat_norm[1,1])
area = np.pi*major_axis*minor_axis
return np.array([tx, ty, major_axis, minor_axis, theta, area])
def phi2param(self, xm, ym):
'''
Given phi values, compute ellipse parameters
Parameters
----------
Phi : np.array [5, ]
for information on Phi values, please refer to ElliFit.
xm : int
ym : int
Returns
-------
param : np.array [5, ].
Ellipse parameters, [cx, cy, a, b, theta]
'''
try:
x0=(self.Phi[2]-self.Phi[3]*self.Phi[1])/((self.Phi[0])-(self.Phi[1])**2)
y0=(self.Phi[0]*self.Phi[3]-self.Phi[2]*self.Phi[1])/((self.Phi[0])-(self.Phi[1])**2)
term2=np.sqrt(((1-self.Phi[0])**2+4*(self.Phi[1])**2))
term3=(self.Phi[4]+(y0)**2+(x0**2)*self.Phi[0]+2*self.Phi[1])
term1=1+self.Phi[0]
print(term1, term2, term3)
b=(np.sqrt(2*term3/(term1+term2)))
a=(np.sqrt(2*term3/(term1-term2)))
alpha=0.5*np.arctan2(2*self.Phi[1],1-self.Phi[0])
model = [x0+xm, y0+ym, a, b, -alpha]
except:
print('Inappropriate model generated')
model = [np.nan, np.nan, np.nan, np.nan, np.nan]
if np.all(np.isreal(model)) and np.all(~np.isnan(model)) and np.all(~np.isinf(model)):
model = model
else:
model = [-1, -1, -1, -1, -1]
return model
def recover_theta(self, mat):
a, b, c, d, e, f = tuple(self.mat2quad(mat))
#print('a: {}. b: {}. c: {}'.format(a, b, c))
if abs(b)<=EPS and a<=c:
theta = 0.0
elif abs(b)<=EPS and a>c:
theta=np.pi/2
elif abs(b)>EPS and a<=c:
theta=0.5*np.arctan2(b, (a-c))
elif abs(b)>EPS and a>c:
#theta = 0.5*(np.pi + np.arctan(b/(a-c)))
theta = 0.5*np.arctan2(b, (a-c))
else:
print('Unknown condition')
return theta
def recover_C(self, mat):
a, b, c, d, e, f = tuple(self.mat2quad(mat))
tx = (2*c*d - b*e)/(b**2 - 4*a*c)
ty = (2*a*e - b*d)/(b**2 - 4*a*c)
return (tx, ty)
def transform(self, H):
'''
Given a transformation matrix H, modify the ellipse
'''
mat_trans = np.linalg.inv(H.T) @ self.mat @ np.linalg.inv(H)
return self.mat2param(mat_trans), self.mat2quad(mat_trans), mat_trans
def recover_Phi(self):
'''
Generate Phi
'''
x, y = self.generatePoints(50, 'random')
data_pts = np.stack([x, y], axis=1)
ellipseFit = ElliFit(**{'data':data_pts})
return ellipseFit.Phi
def verify(self, pts):
'''
Given an array of points Nx2, verify the ellipse model
'''
N = pts.shape[0]
pts = np.concatenate([pts, np.ones((N, 1))], axis=1)
err = 0.0
for i in range(0, N):
err+=pts[i, :]@self.mat@pts[i, :].T # Note that the transpose here is irrelevant
return np.inf if (N==0) else err/N
def generatePoints(self, N, mode):
'''
Generates 8 points along the periphery of an ellipse. The mode dictates
the uniformity between points.
mode: str
'equiAngle' - Points along the periphery with angles [0:45:360)
'equiSlope' - Points along the periphery with tangential slopes [-1:0.5:1)
'random' - Generate N points randomly across the ellipse
'''
a = self.param[2]
b = self.param[3]
alpha = (a*np.sin(self.param[-1]))**2 + (b*np.cos(self.param[-1]))**2
beta = (a*np.cos(self.param[-1]))**2 + (b*np.sin(self.param[-1]))**2
gamma = (a**2 - b**2)*np.sin(2*self.param[-1])
if mode == 'equiSlope':
slope_list = [1e-6, 1, 1000, -1]
K_fun = lambda m_i: (m_i*gamma + 2*alpha)/(2*beta*m_i + gamma)
x_2 = [((a*b)**2)/(alpha + beta*K_fun(m)**2 - gamma*K_fun(m)) for m in slope_list]
x = [(+np.sqrt(val), -np.sqrt(val)) for val in x_2]
y = []
for i, m in enumerate(slope_list):
y1 = -x[i][0]*K_fun(m)
y2 = -x[i][1]*K_fun(m)
y.append((y1, y2))
y_r = np.array(list(chain(*y))) + self.param[1]
x_r = np.array(list(chain(*x))) + self.param[0]
if mode == 'equiAngle':
T = 0.5*np.pi*np.array([-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2])
N = len(T)
x = self.param[2]*np.cos(T)
y = self.param[3]*np.sin(T)
H_rot = rotation_2d(self.param[-1])
X1 = H_rot.dot(np.stack([x, y, np.ones(N, )], axis=0))
x_r = X1[0, :] + self.param[0]
y_r = X1[1, :] + self.param[1]
elif mode == 'random':
T = 2*np.pi*(np.random.rand(N, ) - 0.5)
x = self.param[2]*np.cos(T)
y = self.param[3]*np.sin(T)
H_rot = rotation_2d(self.param[-1])
X1 = H_rot.dot(np.stack([x, y, np.ones(N, )], axis=0))
x_r = X1[0, :] + self.param[0]
y_r = X1[1, :] + self.param[1]
else:
print('Mode is not defined')
return x_r, y_r
class ElliFit():
def __init__(self, **kwargs):
self.data = np.array([]) # Nx2
self.W = np.array([])
self.Phi = []
self.pts_lim = 6*2
for k, v in kwargs.items():
setattr(self, k, v)
if np.size(self.W):
self.weighted = True
else:
self.weighted = False
if np.size(self.data) > self.pts_lim:
self.model = self.fit()
self.error = np.mean(self.fit_error(self.data))
else:
self.model = [-1, -1, -1, -1, -1]
self.Phi = [-1, -1, -1, -1, -1]
self.error = np.inf
def fit(self):
# Code implemented from the paper ElliFit
xm = np.mean(self.data[:, 0])
ym = np.mean(self.data[:, 1])
x = self.data[:, 0] - xm
y = self.data[:, 1] - ym
X = np.stack([x**2, 2*x*y, -2*x, -2*y, -np.ones((np.size(x), ))], axis=1)
Y = -y**2
if self.weighted:
self.Phi = np.linalg.inv(
X.T.dot(np.diag(self.W)).dot(X)
).dot(
X.T.dot(np.diag(self.W)).dot(Y)
)
else:
try:
self.Phi = np.matmul(np.linalg.inv(np.matmul(X.T, X)), np.matmul(X.T, Y))
except:
self.Phi = -1*np.ones(5, )
try:
x0=(self.Phi[2]-self.Phi[3]*self.Phi[1])/((self.Phi[0])-(self.Phi[1])**2)
y0=(self.Phi[0]*self.Phi[3]-self.Phi[2]*self.Phi[1])/((self.Phi[0])-(self.Phi[1])**2)
term2=np.sqrt(((1-self.Phi[0])**2+4*(self.Phi[1])**2))
term3=(self.Phi[4] + (y0)**2 + (x0**2)*self.Phi[0] + 2*self.Phi[1])
term1=1+self.Phi[0]
b=(np.sqrt(2*term3/(term1+term2)))
a=(np.sqrt(2*term3/(term1-term2)))
alpha=0.5*np.arctan2(2*self.Phi[1],1-self.Phi[0])
model = [x0+xm, y0+ym, a, b, -alpha]
except:
print('Inappropriate model generated')
model = [np.nan, np.nan, np.nan, np.nan, np.nan]
if np.all(np.isreal(model)) and np.all(~np.isnan(model)) and np.all(~np.isinf(model)):
model = model
else:
model = [-1, -1, -1, -1, -1]
return model
def fit_error(self, data):
# General purpose function to find the residual
# model: xc, yc, a, b, theta
term1 = (data[:, 0] - self.model[0])*np.cos(self.model[-1])
term2 = (data[:, 1] - self.model[1])*np.sin(self.model[-1])
term3 = (data[:, 0] - self.model[0])*np.sin(self.model[-1])
term4 = (data[:, 1] - self.model[1])*np.cos(self.model[-1])
res = (1/self.model[2]**2)*(term1 - term2)**2 + \
(1/self.model[3]**2)*(term3 + term4)**2 - 1
return np.abs(res)
class ransac():
def __init__(self, data, model, n_min, mxIter, Thres, n_good):
self.data = data
self.num_pts = data.shape[0]
self.model = model
self.n_min = n_min
self.D = n_good if n_min < n_good else n_min
self.K = mxIter
self.T = Thres
self.bestModel = self.model(**{'data': data}) #Fit function all data points
def loop(self):
i = 0
if self.num_pts > self.n_min:
while i <= self.K:
# Pick n_min points at random from dataset
inlr = np.random.choice(self.num_pts, self.n_min, replace=False)
loc_inlr = np.in1d(np.arange(0, self.num_pts), inlr)
outlr = np.where(~loc_inlr)[0]
potModel = self.model(**{'data': self.data[loc_inlr, :]})
listErr = potModel.fit_error(self.data[~loc_inlr, :])
inlr_num = np.size(inlr) + np.sum(listErr < self.T)
if inlr_num > self.D:
pot_inlr = np.concatenate([inlr, outlr[listErr < self.T]], axis=0)
loc_pot_inlr = np.in1d(np.arange(0, self.num_pts), pot_inlr)
betterModel = self.model(**{'data': self.data[loc_pot_inlr, :]})
if betterModel.error < self.bestModel.error:
self.bestModel = betterModel
i += 1
else:
# If the num_pts <= n_min, directly return the model
self.bestModel = self.model(**{'data': self.data})
return self.bestModel
# Helper functions
def rotation_2d(theta):
# Return a 2D rotation matrix in the anticlockwise direction
c, s = np.cos(theta), np.sin(theta)
H_rot = np.array([[c, -s, 0.0], [s, c, 0.0], [0.0, 0.0, 1]])
return H_rot
def trans_2d(cx, cy):
H_trans = np.array([[1.0, 0.0, cx], [0.0, 1.0, cy], [0.0, 0.0, 1]])
return H_trans
def scale_2d(sx, sy):
H_scale = np.array([[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1]])
return H_scale
def mypause(interval):
backend = plt.rcParams['backend']
if backend in matplotlib.rcsetup.interactive_bk:
figManager = matplotlib._pylab_helpers.Gcf.get_active()
if figManager is not None:
canvas = figManager.canvas
if canvas.figure.stale:
canvas.draw()
canvas.start_event_loop(interval)
return
def transformPoints(x, y, H):
N = np.size(x)
pts = np.stack([x, y, np.ones(N, )], axis=1) if (N > 1) else np.array([x, y, 1])
pts = H.dot(pts.T)
ox = pts[0, :] if N>1 else pts[0]
oy = pts[1, :] if N>1 else pts[1]
return (ox, oy)
def fillHoles(I):
# Fill holes in mask
x_hole, y_hole = np.where(I == 0)
for x, y in zip(x_hole, y_hole):
# Fill hole with the mean value
opts = I[x-2:x+2, y-2:y+2].reshape(-1)
if (not isinstance(opts, list)) & (opts.size is not 0) & (sum(opts) != 0):
I[x, y] = np.round(np.mean(opts[opts!=0]))
return I
def one_hot2dist(posmask):
# Input: Mask. Will be converted to Bool.
h, w = posmask.shape
mxDist = np.sqrt((h-1)**2 + (w-1)**2)
if np.any(posmask):
assert len(posmask.shape) == 2
res = np.zeros_like(posmask)
posmask = posmask.astype(np.bool)
if posmask.any():
negmask = ~posmask
res = distance(negmask) * negmask - (distance(posmask) - 1) * posmask
res = res/mxDist
else:
# No valid element exists for that category
res = np.zeros_like(posmask)
return res
def label2onehot(Label):
Label = (np.arange(4) == Label[..., None]).astype(np.uint8)
Label = np.rollaxis(Label, 2)
return Label
def clean_mask(mask):
'''
Input: HXWXC mask
Output: Cleaned mask
cleans the mask by contraction and dilation of edges maps
'''
outmask = np.zeros_like(mask)
classes_available = np.unique(mask)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
for cls_idx in np.nditer(classes_available):
I = 255*np.uint8(mask == cls_idx)
I = cv2.erode(I, kernel, iterations=1)
I = cv2.dilate(I, kernel, iterations=1)
outmask[I.astype(np.bool)] = cls_idx
return outmask
def simple_string(ele):
'''
ele: String which needs to be stripped of all special characters and moved
to lower subscript
Returns a simplified string
'''
if type(ele) is list:
ele = [''.join(e.lower() for e in str(string_ele) if e.isalnum()) for string_ele in ele]
else:
ele = ''.join(e.lower() for e in str(ele) if e.isalnum())
return ele
def pad2Size(img, mask, elParam, pupil_c, size):
badPup = True if np.all(elParam[0] == -1) else False
badIri = True if np.all(elParam[1] == -1) else False
badPup_c = True if np.all(pupil_c == -1) else False
r_in, c_in = img.shape
r_out, c_out = size
up_r = r_out - r_in
up_c = c_out - c_in
assert up_r%2 == 0 # The difference needs to be div by 2
assert up_c%2 == 0
up_r = int(0.5*up_r)
up_c = int(0.5*up_c)
img = np.pad(img, ((up_r, up_r), (up_c, up_c)), mode='constant')
mask = np.pad(mask, ((up_r, up_r), (up_c, up_c)), mode='constant')
elParam[0][:2] = elParam[0][:2] + np.array([up_c, up_r]) if not badPup else elParam[0][:2]
elParam[1][:2] = elParam[1][:2] + np.array([up_c, up_r]) if not badIri else elParam[1][:2]
pupil_c = pupil_c + np.array([up_c, up_r]) if not badPup_c else pupil_c
return img, mask, pupil_c, elParam,
def linVal(x, xlims, ylims, offset):
'''
Given xlims (x_min, x_max) and ylims (y_min, y_max), i.e, start and end,
compute the value of y=f(x). Offset contains the x0 such that for all x<x0,
y is clipped to y_min.
'''
if x < offset:
return ylims[0]
elif x > xlims[1]:
return ylims[1]
else:
y = (np.diff(ylims)/np.diff(xlims))*(x - offset)
return y.item()
def getValidPoints(LabelMat, isPartSeg=True):
'''
RK: This can only be used specifically for PartSeg
Given labels, identify pupil and iris points.
pupil: label == 3, iris: label ==2
'''
im = np.uint8(255*LabelMat.astype(np.float32)/LabelMat.max())
edges = cv2.Canny(im, 50, 100) + cv2.Canny(255-im, 50, 100)
r, c = np.where(edges)
pupilPts = []
irisPts = []
for loc in zip(c, r):
temp = LabelMat[loc[1]-1:loc[1]+2, loc[0]-1:loc[0]+2]
condPupil = np.any(temp == 0) or np.any(temp == 1) or temp.size==0 # Not a valid pupil point
if isPartSeg:
condIris = np.any(temp == 0) or np.any(temp == 3) or temp.size==0
else:
condIris = np.any(temp == 3) or temp.size==0
pupilPts.append(np.array(loc)) if not condPupil else None
irisPts.append(np.array(loc)) if not condIris else None
pupilPts = np.stack(pupilPts, axis=0) if len(pupilPts) > 0 else []
irisPts = np.stack(irisPts, axis=0) if len(irisPts) > 0 else []
return pupilPts, irisPts
def stackall_Dict(D):
for key, value in D.items():
if value:
# Ensure it is not empty
if type(D[key]) is list:
print('Stacking: {}'.format(key))
D[key] = np.stack(value, axis=0)
elif type(D[key]) is dict:
stackall_Dict(D[key])
return D
def extract_datasets(subsets):
'''
subsets: contains an array of strings
'''
ds_idx = [str(ele).split('_')[0] for ele in np.nditer(subsets)]
ds_present, ds_id = np.unique(ds_idx, return_inverse=True)
return ds_present, ds_id
def get_ellipse_info(param, H, cond):
'''
Parameters
----------
param : np.array
Given ellipse parameters, return the following:
a) Normalized Phi values
b) Points along periphery
c) Condition to indicate if ellipse exists
H: np.array 3x3
Normalizing matrix which converts ellipse to normalized coordinates
Returns
-------
normParam: Normalized Ellipse parameters
elPts: Points along ellipse periphery
'''
if not cond:
norm_param = my_ellipse(param).transform(H)[0][:-1] # We don't want the area
elPts = my_ellipse(norm_param).generatePoints(50, 'equiAngle') # Regular points
elPts = np.stack(elPts, axis=1)
if norm_param[2] > norm_param[3]:
# This rotates the ellipse by 90 degrees to ensure param 3 is
# always greater than 2
norm_param[[2, 3]] = norm_param[[3, 2]] # Exchange major and minor axis
norm_param[-1] = np.unwrap(0.5*np.pi + norm_param[-1])
else:
# Ellipse does not exist
norm_param = -np.ones((5, ))
elPts = -np.ones((8, 2))
return elPts, norm_param
# Plot segmentation output, pupil and iris ellipses
def plot_segmap_ellpreds(image, seg_map, pupil_ellipse, iris_ellipse):
loc_iris = seg_map == 1
loc_pupil = seg_map == 2
out_image = np.stack([image]*3, axis=2)
loc_image_non_sat = image < (255-100)
# Add green to iris
out_image[..., 1] = out_image[..., 1] + 100*loc_iris*loc_image_non_sat
# Add yellow to pupil
out_image[..., 0] = out_image[..., 0] + 100*loc_pupil*loc_image_non_sat
out_image[..., 1] = out_image[..., 1] + 100*loc_pupil*loc_image_non_sat
# Sketch iris ellipse
if not np.all(iris_ellipse==-1):
[rr_i, cc_i] = draw.ellipse_perimeter(int(iris_ellipse[1]),
int(iris_ellipse[0]),
int(iris_ellipse[3]),
int(iris_ellipse[2]),
orientation=iris_ellipse[4])
rr_i = rr_i.clip(6, image.shape[0]-6)
cc_i = cc_i.clip(6, image.shape[1]-6)
out_image[rr_i, cc_i, ...] = np.array([0, 0, 255])
if not np.all(pupil_ellipse==-1):
# Sketch pupil ellipse
[rr_p, cc_p] = draw.ellipse_perimeter(int(pupil_ellipse[1]),
int(pupil_ellipse[0]),
int(pupil_ellipse[3]),
int(pupil_ellipse[2]),
orientation=pupil_ellipse[4])
rr_p = rr_p.clip(6, image.shape[0]-6)
cc_p = cc_p.clip(6, image.shape[1]-6)
out_image[rr_p, cc_p, ...] = np.array([255, 0, 0])
return out_image
# Data extraction helpers
def generateEmptyStorage(name, subset):
'''
This file generates an empty dictionary with
all relevant fields. This helps in maintaining
consistency across all datasets.
'''
Data = {k:[] for k in ['Images', # Gray image
'dataset', # Dataset
'subset', # Subset
'resolution', # Image resolution
'archive', # H5 file name
'Info', # Path to original image
'Masks', # Mask
'Masks_noSkin', # Mask with only iris and pupil
'Fits', # Pupil and Iris fits
'pupil_loc']}
Data['Fits'] = {k:[] for k in ['pupil', 'iris']}
Key = {k:[] for k in [ 'dataset',# Dataset
'subset', # Subset
'resolution', # Image resolution
'archive', # H5 file name
'Info', # Path to original image
'Fits', # Pupil and Iris fits
'pupil_loc']}
Key['Fits'] = {k:[] for k in ['pupil', 'iris']}
Data['dataset'] = name
Data['subset'] = subset
Key['dataset'] = name
Key['subset'] = subset
return Data, Key