-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
84 lines (66 loc) · 2.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 29 12:08:29 2017
@authors: Rachid Riad and Kimia Nadjahi
"""
from scikits.audiolab import Sndfile, play
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import SparseCoder
def gammatone_function(resolution, fc, center, fs=16000, l=4,
b=1.019):
t = np.linspace(0, resolution-(center+1), resolution-center)/fs
g = np.zeros((resolution,))
g[center:] = t**(l-1) * np.exp(-2*np.pi*b*erb(fc)*t)*np.cos(2*np.pi*fc*t)
return g
def gammatone_matrix(b, fc, resolution, step, fs=16000, l=4, threshold=5):
"""Dictionary of gammatone functions"""
centers = np.arange(0, resolution - step, step)
D = []
for i, center in enumerate(centers):
t = np.linspace(0, resolution-(center+1), resolution-center)/fs
env = t**(l-1) * np.exp(-2*np.pi*b*erb(fc)*t)
if env[-1]/max(env) < threshold:
D.append(gammatone_function(resolution, fc, center, b=b, l=l))
D = np.asarray(D)
D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis]
return D
def erb(f):
return 24.7+0.108*f
def erb_space(low_freq, high_freq, num_channels, EarQ = 9.26449, minBW = 24.7, order = 1):
return -(EarQ*minBW) + np.exp(np.arange(1,num_channels+1)*(-np.log(high_freq + EarQ*minBW) + np.log(low_freq + EarQ*minBW))/num_channels) * (high_freq + EarQ*minBW)
if __name__ == '__main__':
filename = 'data/fsew/fsew0_001.wav'
f = Sndfile(filename, 'r')
nf = f.nframes
fs = f.samplerate
data = f.read_frames(5000)
data = f.read_frames(5000)
x = np.array(range(5000))/float(nf)
plt.figure(1)
plt.title('Signal Wave...')
plt.xlabel('Time in s')
plt.ylabel('Amplitude')
plt.plot(x,data)
plt.show()
D = {}
# Parameters for the spike/kernel dictionnary
n = 4
f_max = 5000
f_min = 100
phi_min = 0.0
phi_max = np.max(x)
b_max = 10
b_min = 1
idx = 0
for freq in range(f_min,f_max+100,1000):
for phi_idx in range(0,101,5):
for b in range(b_min,b_max,1):
b = b/10.0
phi = (phi_max)*phi_idx/100.0
D[idx] = [n,b,freq,phi]
idx += 1
num_spikes = len(D)
M = np.zeros((5000,num_spikes))