-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffertree.py
334 lines (301 loc) · 11.8 KB
/
buffertree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import math
class BufferTreeNode:
def __init__(self, leaf=False):
self.leaf = leaf
self.keys = []
self.child = []
self.buffer=[]
class BufferTree:
def __init__(self, t):
self.root = BufferTreeNode(True)
self.t = t
self.nodeswithbuffer = dict()
def bufferinsert(self, b):
b = [b]
x = self.root
self.nodeswithbuffer[0] = {x}
for i in b:
if len(x.buffer) >= 3:
self.bufferempty(x)
x=self.root
x.buffer.append(i)
# clear current node's buffer
# if it has child, then push down these keys in its buffer to children's buffer
# if it is leaf, then call insert() or delete() function to update these keys from buffer to keys.
def bufferempty(self, x):
if x.child != []:
for i in x.buffer:
flag_be = False
for j in range(len(x.keys)):
if flag_be: break
if i[0] < x.keys[j][0]:
if len(x.child[j].buffer) >= 3:
self.bufferempty(x.child[j])
x.child[j].buffer.append(i)
flag_be = True
for k in self.nodeswithbuffer:
if x in self.nodeswithbuffer[k]:
if k+1 in self.nodeswithbuffer:
self.nodeswithbuffer[k+1].add(x.child[j])
break
else:
self.nodeswithbuffer[k+1] = {x.child[j]}
break
elif j == len(x.keys) - 1:
if len(x.child[j+1].buffer) >= 3:
self.bufferempty(x.child[j+1])
j = len(x.keys) - 1
x.child[j+1].buffer.append(i)
flag_be = True
for k in self.nodeswithbuffer:
if x in self.nodeswithbuffer[k]:
if k+1 in self.nodeswithbuffer:
self.nodeswithbuffer[k+1].add(x.child[j+1])
break
else:
self.nodeswithbuffer[k+1] = {x.child[j+1]}
break
x.buffer = []
self.removefromdict(x)
else:
while x.buffer != []:
a = x.buffer.pop(0)
if a[1] == "i":
self.insert((a[0],))
elif a[1] == "d":
self.delete(self.root, (a[0],))
self.removefromdict(x)
############################### insert ###############################
# 每次插入从root开始,先检查root是否满了,若满了需要创建新的root。
def insert(self, k):
root = self.root
# if len(root.keys) == (4 * self.t) - 1:
if len(root.keys) == self.t - 1:
temp = BufferTreeNode()
self.root = temp
temp.child.insert(0, root)
self.split_child(temp, 0)
self.insert_non_full(temp, k)
else:
self.insert_non_full(root, k)
# 如果是leaf node,就插入到keys[]中相应的位置;否则向下遍历孩子结点。
def insert_non_full(self, x, k):
i = len(x.keys) - 1
if x.leaf:
x.keys.append((None, None))
while i >= 0 and k[0] < x.keys[i][0]:
x.keys[i + 1] = x.keys[i]
i -= 1
x.keys[i + 1] = k
else:
while i >= 0 and k[0] < x.keys[i][0]:
i -= 1
i += 1
# 如果孩子结点满了,就进行分裂。
# if len(x.child[i].keys) == (4 * self.t) - 1:
if len(x.child[i].keys) == self.t - 1:
self.split_child(x, i)
if k[0] > x.keys[i][0]:
i += 1
self.insert_non_full(x.child[i], k)
def split_child(self, x, i):
t = self.t
y = x.child[i]
z = BufferTreeNode(y.leaf)
x.child.insert(i + 1, z)
half_idx = math.ceil(t/2.0) - 1
x.keys.insert(i, y.keys[half_idx])
z.keys = y.keys[half_idx + 1: t - 1]
y.keys = y.keys[0: half_idx]
if not y.leaf:
z.child = y.child[half_idx + 1: t]
y.child = y.child[0: half_idx + 1]
# x.keys.insert(i, y.keys[t - 1])
# z.keys = y.keys[t: (4 * t) - 1]
# y.keys = y.keys[0: t - 1]
# if not y.leaf:
# z.child = y.child[t: 4 * t]
# y.child = y.child[0: t]
return
############################### delete ###############################
# 每次删除从root开始
def delete(self, x, k):
t = self.t
i = 0
while i < len(x.keys) and k[0] > x.keys[i][0]: # 寻找所在位置
i += 1
if x.leaf: # 如果是leaf node,直接删除相应的key
if i < len(x.keys) and x.keys[i][0] == k[0]:
x.keys.pop(i)
return x
else: # 这种情况说明要删的k不存在,直接return
return x
else :
if i < len(x.keys) and x.keys[i][0] == k[0]: # 要删除的k在非叶结点上
self.delete_internal_node(x, k, i)
return x
elif len(x.child[i].keys) >= math.ceil(t/2.0): # 该结点的key足够多
self.delete(x.child[i], k)
else:
if i != 0 and i + 1 < len(x.child):
if len(x.child[i - 1].keys) >= math.ceil(t/2.0):
self.delete_sibling(x, i, i - 1)
self.delete(x.child[i], k)
elif len(x.child[i + 1].keys) >= math.ceil(t/2.0):
self.delete_sibling(x, i, i + 1)
self.delete(x.child[i], k)
else:
self.delete_merge(x, i, i + 1)
self.delete(x.child[i], k)
elif i == 0:
if len(x.child[i + 1].keys) >= math.ceil(t/2.0):
self.delete_sibling(x, i, i + 1)
self.delete(x.child[i], k)
else:
self.delete_merge(x, i, i + 1)
self.delete(x.child[i], k)
elif i + 1 == len(x.child):
if len(x.child[i - 1].keys) >= math.ceil(t/2.0):
self.delete_sibling(x, i, i - 1)
self.delete(x.child[i], k)
else:
self.delete_merge(x, i, i - 1)
self.delete(x.child[i-1], k)
# self.delete(x.child[i], k)
return x
# Delete internal node
def delete_internal_node(self, x, k, i):
t = self.t
if x.leaf:
if x.keys[i][0] == k[0]:
x.keys.pop(i)
return
return
if len(x.child[i].keys) > math.ceil(t/2.0) - 1 :
x.keys[i] = self.delete_predecessor(x.child[i])
elif len(x.child[i + 1].keys) > math.ceil(t/2.0) - 1 :
x.keys[i] = self.delete_successor(x.child[i + 1])
else:
self.delete_merge(x, i, i + 1)
self.delete_internal_node(x.child[i], k, math.ceil(t/2.0) - 1)
return
# Delete the predecessor
def delete_predecessor(self, x):
if x.leaf:
return x.keys.pop()
n = len(x.keys) - 1
if len(x.child[n].keys) > math.ceil(self.t/2.0) -1 :
self.delete_sibling(x, n + 1, n)
else:
self.delete_merge(x, n, n + 1)
self.delete_predecessor(x.child[n])
# Delete the successor
def delete_successor(self, x):
if x.leaf:
return x.keys.pop(0)
if len(x.child[1].keys) > math.ceil(self.t/2.0) - 1 :
self.delete_sibling(x, 0, 1)
else:
self.delete_merge(x, 0, 1)
self.delete_successor(x.child[0])
# Delete resolution
def delete_merge(self, x, i, j):
cnode = x.child[i]
if j > i:
rsnode = x.child[j]
cnode.keys.append(x.keys[i]) #
for k in range(len(rsnode.keys)):
cnode.keys.append(rsnode.keys[k])
if len(rsnode.child) > 0:
cnode.child.append(rsnode.child[k])
if len(rsnode.child) > 0:
cnode.child.append(rsnode.child.pop())
for k in range(len(rsnode.buffer)):
cnode.buffer.append(rsnode.buffer[k])
new = cnode
x.keys.pop(i)
x.child.pop(j)
else:
lsnode = x.child[j]
lsnode.keys.append(x.keys[j])
for k in range(len(cnode.keys)):
lsnode.keys.append(cnode.keys[k])
if len(lsnode.child) > 0:
lsnode.child.append(cnode.child[k])
if len(lsnode.child) > 0:
lsnode.child.append(cnode.child.pop())
for k in range(len(cnode.buffer)):
lsnode.buffer.append(cnode.buffer[k])
new = lsnode
x.keys.pop(j)
x.child.pop(i)
if x == self.root and len(x.keys) == 0:
self.root = new
x = new
return x
# 从兄弟结点借key
def delete_sibling(self, x, i, j):
cnode = x.child[i]
if i < j:
rsnode = x.child[j]
cnode.keys.append(x.keys[i])
x.keys[i] = rsnode.keys[0]
if len(rsnode.child) > 0:
cnode.child.append(rsnode.child[0])
rsnode.child.pop(0)
rsnode.keys.pop(0)
else:
lsnode = x.child[j]
cnode.keys.insert(0, x.keys[i - 1])
x.keys[i - 1] = lsnode.keys.pop()
if len(lsnode.child) > 0:
cnode.child.insert(0, lsnode.child.pop())
def search(self, b, x):
if (b,) in x.keys or (b,"i") in x.buffer or (b,"d") in x.buffer:
return True
if x.child != []:
for i in range(len(x.keys)):
if b < x.keys[i][0]:
return self.search(b, x.child[i])
elif i == len(x.keys) - 1:
return self.search(b, x.child[i+1])
return False
# Print the tree
def print_tree(self, x, l=0):
print("Level_{}".format(l), ", children num is", len(x.child), ", key num is", len(x.keys), end=" : ")
for i in x.keys:
print(i[0], end=" ")
print()
l += 1
if len(x.child) > 0:
for i in x.child:
self.print_tree(i, l)
return
def inorder(self,x, topr):
if not x.leaf:
for i in range(len(x.child)):
self.inorder(x.child[i], topr)
if i < len(x.keys):
topr.append(x.keys[i][0])#, end=", ")
else:
for k in x.keys:
topr.append(k[0])#, end=", ")
return
def emptyallbuffers(self):
while not self.checkifbufferempty():
for i in self.nodeswithbuffer.copy():
for j in self.nodeswithbuffer[i].copy():
self.bufferempty(j)
# self.nodeswithbuffer[i].remove(j)
def checkifbufferempty(self):
for i in self.nodeswithbuffer:
for j in self.nodeswithbuffer[i]:
if j.buffer != []:
return False
return True
def removefromdict(self, x):
for ii in self.nodeswithbuffer.copy():
for jj in self.nodeswithbuffer[ii].copy():
if jj == x:
self.nodeswithbuffer[ii].remove(jj)
return