-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsegmentation_vis_demo.py
executable file
·141 lines (105 loc) · 4.26 KB
/
segmentation_vis_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Removes the color map from segmentation annotations.
Removes the color map from the ground truth segmentation annotations and save
the results to output_dir.
"""
import glob
import os.path
import numpy as np
from PIL import Image
import tensorflow as tf
from matplotlib import gridspec
from matplotlib import pyplot as plt
import cv2
import csv
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('original_color_folder',
"/home/robin/Dataset/VOC/VOC2012_VOCtrainval/VOC2012/JPEGImages",
'Original ground truth annotations.')
tf.app.flags.DEFINE_string('semantic_segmentation_folder',
"/home/robin/Dataset/VOC/VOC2012_VOCtrainval/VOC2012/SegmentationClassRaw",
'Folder containing semantic segmentation annotations.')
tf.app.flags.DEFINE_string('segmentation_format', 'png', 'Segmentation format.')
tf.app.flags.DEFINE_string('segmentation_output_dir',
'./battery_word_seg/SegmentationClassRaw',
'folder to save modified ground truth annotations.')
tf.app.flags.DEFINE_bool('convert', True,
'folder to save modified ground truth annotations.')
def _remove_colormap(filename):
"""Removes the color map from the annotation.
Args:
filename: Ground truth annotation filename.
Returns:
Annotation without color map.
"""
return np.array(Image.open(filename))
def _save_annotation(annotation, filename):
"""Saves the annotation as png file.
Args:
annotation: Segmentation annotation.
filename: Output filename.
"""
pil_image = Image.fromarray(annotation.astype(dtype=np.uint8))
with tf.gfile.Open(filename, mode='w') as f:
pil_image.save(f, 'PNG')
def vis_segmentation(image, seg_map):
"""Visualizes input image, segmentation map and overlay view."""
plt.figure(figsize=(16, 8))
grid_spec = gridspec.GridSpec(1, 4, width_ratios=[6, 6, 6, 1])
plt.subplot(grid_spec[0])
plt.imshow(image)
plt.axis('off')
plt.title('input image')
plt.subplot(grid_spec[1])
plt.imshow(seg_map)
plt.axis('off')
plt.title('segmentation map')
plt.subplot(grid_spec[2])
plt.imshow(image)
plt.imshow(seg_map, alpha=0.8)
plt.axis('off')
plt.title('segmentation overlay')
plt.show()
def write_file(file_name_string,seg):
with open(file_name_string, 'wb') as csvfile:
spamwriter = csv.writer(csvfile, dialect='excel')
for i in range(seg.shape[0]):
spamwriter.writerow(seg[i][:])
def main(unused_argv):
if(FLAGS.convert):
annotations = glob.glob(os.path.join(FLAGS.semantic_segmentation_folder,
'*.' + FLAGS.segmentation_format))
for annotation in annotations:
print(annotation)
ori_filename = os.path.join(FLAGS.original_color_folder,os.path.basename(annotation)[:-4]+".jpg")
print(ori_filename)
# ori_im =Image.open(ori_filename)
color_im = cv2.imread(ori_filename)
rgb_image = cv2.cvtColor(color_im,cv2.COLOR_BGR2RGB)
print(rgb_image.shape)
seg_im = cv2.imread(annotation,0)
print(seg_im.shape)
#dst = src1 * alpha + src2 * beta + gamma;
#alpha,beta,gamma
# alpha = 0.3
# beta = 1-alpha
# gamma = 0
# img_add = cv2.addWeighted(rgb_image, alpha, seg_im, beta, gamma)
# cv2.imshow("image_add",img_add)
# cv2.waitKey(0)
vis_segmentation(rgb_image,seg_im*125)
if __name__ == '__main__':
tf.app.run()