-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtfrecord_mask_demo.py
executable file
·254 lines (220 loc) · 10.6 KB
/
tfrecord_mask_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#coding=utf-8
import tensorflow as tf
import sys
import cv2
import os
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import csv
# This is needed since the notebook is stored in the object_detection folder.
TF_API="/home/ubuntu/eclipse-workspace/models/research/"
sys.path.append(os.path.split(TF_API)[0])
sys.path.append(TF_API)
from object_detection.utils import label_map_util
from object_detection.utils import ops as utils_ops
from object_detection.utils import visualization_utils as vis_util
slim = tf.contrib.slim
NUM_CLASSES = 20
SPLITS_TO_SIZES = {
'train': 5011,
'test': 4952,
}
ITEMS_TO_DESCRIPTIONS = {
'image': 'A color image of varying height and width.',
'shape': 'Shape of the image',
'object/bbox': 'A list of bounding boxes, one per each object.',
'object/label': 'A list of labels, one per each object.',
}
labels_to_class =['none','aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant', 'sheep', 'sofa',
'train', 'tvmonitor']
FILE_PATTERN = 'voc_2007_%s_*.tfrecord'
def _get_output_filename(dataset_dir, split_name):
"""Creates the output filename.
Args:
dataset_dir: The dataset directory where the dataset is stored.
split_name: The name of the train/test split.
Returns:
An absolute file path.
"""
return '%s/%s*.tfrecord' % (dataset_dir, split_name)
def bboxes_draw_on_img(img, classes, bboxes, colors, thickness=2):
shape = img.shape
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
# Draw bounding box...
p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
cv2.rectangle(img, p1[::-1], p2[::-1], colors, thickness)
# Draw text...
s = '%s' % (labels_to_class[classes[i]])
p1 = (p1[0]+15, p1[1]+5)
cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, colors, 1)
def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
"""Gets a dataset tuple with instructions
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources.
file_pattern: The file pattern to use when matching the dataset sources.
It is assumed that the pattern contains a '%s' string so that the split
name can be inserted.
reader: The TensorFlow reader type.
Returns:
A `Dataset` namedtuple.
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if split_name not in SPLITS_TO_SIZES:
raise ValueError('split name %s was not recognized.' % split_name)
if not file_pattern:
file_pattern = FILE_PATTERN
file_pattern = os.path.join(dataset_dir, file_pattern % split_name)
# Allowing None in the signature so that dataset_factory can use the default.
if reader is None:
reader = tf.TFRecordReader
# #文件名格式
# if file_pattern is None:
# file_pattern = _get_output_filename('tfrecords','voc_2007_train')#need fix your filename
# print(file_pattern)
# 适配器1:将example反序列化成存储之前的格式。由tf完成
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'),
'image/height': tf.FixedLenFeature([1], tf.int64),
'image/width': tf.FixedLenFeature([1], tf.int64),
'image/channels': tf.FixedLenFeature([1], tf.int64),
'image/shape': tf.FixedLenFeature([3], tf.int64),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),
'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64),
'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64),
}
#适配器2:将反序列化的数据组装成更高级的格式。由slim完成
items_to_handlers = {
'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'),
'shape': slim.tfexample_decoder.Tensor('image/shape'),
'object/bbox': slim.tfexample_decoder.BoundingBox(
['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'),
'object/label': slim.tfexample_decoder.Tensor('image/object/bbox/label'),
'object/difficult': slim.tfexample_decoder.Tensor('image/object/bbox/difficult'),
'object/truncated': slim.tfexample_decoder.Tensor('image/object/bbox/truncated'),
}
# 解码器
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
# dataset对象定义了数据集的文件位置,解码方式等元信息
dataset = slim.dataset.Dataset(
data_sources=file_pattern,
reader=reader,
num_samples = SPLITS_TO_SIZES['test'], # 手动生成了三个文件, 每个文件里只包含一个example
decoder=decoder,
items_to_descriptions = ITEMS_TO_DESCRIPTIONS,
num_classes=NUM_CLASSES)
return dataset
#读取tfrecords文件
def decode_from_tfrecords(filename,num_epoch=None):
filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#因为有的训练数据过于庞大,被分成了很多个文件,所以第一个参数就是文件列表名参数
reader=tf.TFRecordReader()
_,serialized=reader.read(filename_queue)
example=tf.parse_single_example(serialized,features={
'image/height':tf.FixedLenFeature([],tf.int64),
'image/width':tf.FixedLenFeature([],tf.int64),
'image/encoded':tf.FixedLenFeature([],tf.string),
'image/object/class/label':tf.FixedLenFeature([],tf.int64)
})
label=tf.cast(example['image/object/class/label'], tf.int32)
image=tf.decode_raw(example['image/encoded'],tf.uint8)
image=tf.reshape(image,tf.stack([
tf.cast(example['image/height'], tf.int32),
tf.cast(example['image/width'], tf.int32),
3]))
print('decode_from_tfrecords: ',image)
print('decode_from_tfrecords: ',label)
return image,label
def plt_bboxes(img, classes, scores, bboxes, figsize=(10,10), linewidth=1.5):
"""Visualize bounding boxes. Largely inspired by SSD-MXNET!
"""
fig = plt.figure(figsize=figsize)
plt.imshow(img)
height = img.shape[0]
width = img.shape[1]
colors = dict()
for i in range(classes.shape[0]):
cls_id = int(classes[i])
if cls_id >= 0:
score = scores[i]
if cls_id not in colors:
colors[cls_id] = (random.random(), random.random(), random.random())
ymin = int(bboxes[i, 0] * height)
xmin = int(bboxes[i, 1] * width)
ymax = int(bboxes[i, 2] * height)
xmax = int(bboxes[i, 3] * width)
# crop_img = img[xmin:(xmax - xmin),xmax:(ymax - ymin)]
# misc.imsave('1.jpg', crop_img)
rect = plt.Rectangle((xmin, ymin), xmax - xmin,
ymax - ymin, fill=False,
edgecolor=colors[cls_id],
linewidth=linewidth)
plt.gca().add_patch(rect)
class_name = CLASSES[cls_id]
plt.gca().text(xmin, ymin - 2,
'{:s} | {:.3f}'.format(class_name, score),
bbox=dict(facecolor=colors[cls_id], alpha=0.5),
fontsize=12, color='white')
plt.show()
def write_file(file_name_string,seg):
with open(file_name_string, 'wb') as csvfile:
spamwriter = csv.writer(csvfile, dialect='excel')
for i in range(seg.shape[0]):
spamwriter.writerow(seg[i][:])
def test():
reconstructed_images = []
record_iterator = tf.python_io.tf_record_iterator(path='datasets/battery_word_seg/tfrecord/trainval-00000-of-00002.tfrecord')
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
coord=tf.train.Coordinator()
threads= tf.train.start_queue_runners(coord=coord)
for string_iterator in record_iterator:
plt.figure(figsize=(12, 12))
example = tf.train.Example()
example.ParseFromString(string_iterator)
height = example.features.feature['image/height'].int64_list.value[0]
width = example.features.feature['image/width'].int64_list.value[0]
png_string = example.features.feature['image/encoded'].bytes_list.value[0]
# label = example.features.feature['image/object/class/label'].int64_list.value[0]
# xmin = example.features.feature['image/object/bbox/xmin'].float_list.value[0]
# xmax = example.features.feature['image/object/bbox/xmax'].float_list.value[0]
# ymin = example.features.feature['image/object/bbox/ymin'].float_list.value[0]
# ymax = example.features.feature['image/object/bbox/ymax'].float_list.value[0]
encoded_mask_string = example.features.feature['image/segmentation/class/encoded'].bytes_list.value[0]
plt.subplot(131)
mask_decode_png = tf.image.decode_png(encoded_mask_string, channels=1)
fix_mask =tf.cast(tf.greater(mask_decode_png,0),tf.uint8)
redecode_mask_img = sess.run(mask_decode_png)
# write_file("mask.csv",redecode_mask_img)
print(redecode_mask_img.shape)
redecode_mask = redecode_mask_img * 255
mask_img = np.squeeze(redecode_mask, axis = 2)
plt.imshow(mask_img)
im = Image.fromarray(mask_img)
im.save("pets.png")
plt.subplot(132)
decoded_img = tf.image.decode_jpeg(png_string, channels=3)
reconstructed_img = sess.run(decoded_img)
print(reconstructed_img.shape)
plt.imshow(reconstructed_img)
plt.subplot(133)
vis_util.draw_mask_on_image_array(
image = reconstructed_img,
mask = np.squeeze(sess.run(fix_mask), axis = 2),
alpha=0.8)
plt.imshow(reconstructed_img)
plt.show()
coord.request_stop()
coord.join(threads)
test()