-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathfunctional.py
624 lines (400 loc) · 16.5 KB
/
functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import numpy as np
import MLlib
import MLlib.autograd as autograd
from MLlib.utils.misc_utils import unbroadcast
"""
Contains the Functions which are called whenever an operation concerning
Tensors and computaion graph occurs.
All the functions are derived from the base class `MLlib.autograd.Function`
which defines a `.apply()` method which calls the `.forward()` method and
the `.backward()` method (not directly though) of these functions as and when
required.
`__slots__`: defined to reduce memory overhead. This should be an empty tuple
unless a function explicitly requires a variable to be stored
in the class itself. If such case arises:the function must
define its own `__init__()` method and put the class variable's
name in `__slots__`
`.forward(...)`: this method performs the required operation and is called by
`.apply()`. To find out more about `.apply()` method,
please checkout `autograd.py`
`.backward(...)`: this method takes the gradient of the root of computation
graph with respect to the output of the operation as
input and returns the gradient of root of the computation
graph with repect to the operands of the operation.
Why unbroadcast(...) is being used?
numpy broadcasts the input in order to perform different operations and the
gradients are returned in the shape used for performing the operation. So we
need a way to reshape those gradients back to the shape of the original
operand, and the `unbroadcast()` utility does that for us.
"""
class Transpose(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a):
if not (type(a).__name__ == 'Tensor'):
raise Exception("The arg must be Tensor, got \
{} instead".format(type(a).__name__))
if not len(a.shape) == 2:
raise Exception("Arg for Transpose must be 2D tensor, \
got {}".format(a.shape))
requires_grad = a.requires_grad
b = MLlib.Tensor(a.data.T, requires_grad=requires_grad,
is_leaf=not requires_grad)
return b
@staticmethod
def backward(ctx, grad_output):
return MLlib.Tensor(grad_output.data.T)
class Reshape(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, shape):
if not type(a).__name__ == 'Tensor':
raise Exception("Arg for Reshape must be tensor, got\
{}".format(type(a).__name__))
requires_grad = a.requires_grad
if requires_grad:
ctx.shape = a.shape
c = MLlib.Tensor(a.data.reshape(shape), requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
return MLlib.Tensor(grad_output.data.reshape(ctx.shape))
class Absolute(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, x):
if not type(x).__name__ == 'Tensor':
raise Exception("Arg for Absolute function must be tensor, got\
{}".format(type(x).__name__))
out = np.absolute(x.data)
requires_grad = x.requires_grad
if requires_grad:
ctx.save_for_backward(x)
output = MLlib.Tensor(out, requires_grad=requires_grad,
is_leaf=not requires_grad)
return output
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
grad_x = (-1 * (x.data < 0).astype(int) + (x.data > 0).astype(int))
grad_x = MLlib.Tensor(grad_x * grad_output.data)
return grad_x
class Pad2d(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, input, pad=(0, 0), mode='zeros'):
if not type(input).__name__ == 'Tensor':
raise Exception("Arg for Pad function must be tensor, got\
{}".format(type(input).__name__))
output = np.pad(input.data,
((0, 0), (0, 0), (pad[0], pad[0]), (pad[1], pad[1])))
requires_grad = input.requires_grad
if requires_grad:
ctx.input_shape = input.shape
output = MLlib.Tensor(output, requires_grad=requires_grad,
is_leaf=not requires_grad)
return output
@staticmethod
def backward(ctx, grad_ouput):
# shape = ctx.input_shape
# TODO: unpad the grad_out to be of shape `shape` above
pass
class Add(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
if requires_grad:
ctx.shape_a = a.shape
ctx.shape_b = b.shape
c = MLlib.Tensor(a.data + b.data, requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
shape_a, shape_b = ctx.shape_a, ctx.shape_b
# dL/da = (dout/da)*dL/dout
grad_a = np.ones(shape_a) * grad_output.data
grad_b = np.ones(shape_b) * grad_output.data
grad_a = MLlib.Tensor(unbroadcast(grad_a, shape_a))
grad_b = MLlib.Tensor(unbroadcast(grad_b, shape_b))
return grad_a, grad_b
class Sub(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
if requires_grad:
ctx.shape_a = a.shape
ctx.shape_b = b.shape
c = MLlib.Tensor(a.data - b.data, requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
shape_a, shape_b = ctx.shape_a, ctx.shape_b
grad_a = np.ones(shape_a) * grad_output.data
grad_b = np.ones(shape_b) * grad_output.data * (-1)
grad_a = MLlib.Tensor(unbroadcast(grad_a, shape_a))
grad_b = MLlib.Tensor(unbroadcast(grad_b, shape_b))
return grad_a, grad_b
class Mul(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
if requires_grad:
ctx.save_for_backward(a, b)
c = MLlib.Tensor(a.data * b.data, requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_a = b.data * grad_output.data
grad_b = a.data * grad_output.data
grad_a = MLlib.Tensor(unbroadcast(grad_a, a.shape))
grad_b = MLlib.Tensor(unbroadcast(grad_b, b.shape))
return grad_a, grad_b
class Div(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
if requires_grad:
ctx.save_for_backward(a, b)
c = MLlib.Tensor(a.data / b.data, requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_a = grad_output.data / b.data
grad_b = (-1)*a.data * grad_output.data / (b.data**2)
grad_a = MLlib.Tensor(unbroadcast(grad_a, a.shape))
grad_b = MLlib.Tensor(unbroadcast(grad_b, b.shape))
return grad_a, grad_b
class MatMul(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
if requires_grad:
ctx.save_for_backward(a, b)
c = MLlib.Tensor(np.matmul(a.data, b.data),
requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
grad_output = grad_output.data
a, b = ctx.saved_tensors
grad_a = (grad_output) @ (b.data.T)
grad_b = (a.data.T) @ (grad_output)
grad_a = MLlib.Tensor(unbroadcast(grad_a, a.shape))
grad_b = MLlib.Tensor(unbroadcast(grad_b, b.shape))
return grad_a, grad_b
class Pow(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
c = MLlib.Tensor(np.power(a.data, b.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
if requires_grad:
ctx.save_for_backward(a, b, c)
ctx.a_req_grad = a.requires_grad
ctx.b_req_grad = b.requires_grad
return c
@staticmethod
def backward(ctx, grad_output):
a, b, output = ctx.saved_tensors
grad_a = grad_b = None
if ctx.a_req_grad:
grad_a = b.data * np.power(a.data, b.data-1) * grad_output.data
grad_a = MLlib.Tensor(unbroadcast(grad_a, a.shape))
if ctx.b_req_grad:
grad_b = output.data * np.log(a.data) * grad_output.data
grad_b = MLlib.Tensor(unbroadcast(grad_b, b.shape))
return grad_a, grad_b
class Dot(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, b):
if not (type(a).__name__ == 'Tensor' and type(b).__name__ == 'Tensor'):
raise Exception("Both args must be Tensors, got \
{}, {} instead".format(type(a).__name__, type(b).__name__))
requires_grad = a.requires_grad or b.requires_grad
if requires_grad:
ctx.save_for_backward(a, b)
c = MLlib.Tensor(np.dot(a.data, b.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
grad_output = grad_output.data
a, b = ctx.saved_tensors
if len(grad_output.shape) > 0:
grad_a = (grad_output).dot(b.data.T)
grad_b = (a.data.T).dot(grad_output)
grad_a = MLlib.Tensor(unbroadcast(grad_a, a.shape))
grad_b = MLlib.Tensor(unbroadcast(grad_b, b.shape))
else:
grad_a = (grad_output) * (b.data.T)
grad_b = (a.data.T) * (grad_output)
grad_a = MLlib.Tensor(unbroadcast(grad_a, a.shape))
grad_b = MLlib.Tensor(unbroadcast(grad_b, b.shape))
return grad_a, grad_b
class Sum(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a, axis, keepdims):
if not type(a).__name__ == 'Tensor':
raise Exception("Only sum of tensor is supported")
requires_grad = a.requires_grad
if requires_grad:
ctx.axis = axis
ctx.shape = a.shape
if axis is not None:
ctx.len = a.shape[axis]
ctx.keepdims = keepdims
c = MLlib.Tensor(a.data.sum(axis=axis, keepdims=keepdims),
requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
grad_out = grad_output.data
if (ctx.axis is not None) and (not ctx.keepdims):
grad_out = np.expand_dims(grad_output.data, axis=ctx.axis)
else:
grad_out = grad_output.data.copy()
grad = np.ones(ctx.shape) * grad_out
assert grad.shape == ctx.shape
return MLlib.Tensor(grad)
class Log(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a):
if not type(a).__name__ == 'Tensor':
raise Exception("Arg for Log must be tensor, got\
{}".format(type(a).__name__))
requires_grad = a.requires_grad
if requires_grad:
ctx.save_for_backward(a)
c = MLlib.Tensor(np.log(a.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
a = ctx.saved_tensors[0]
return MLlib.Tensor(grad_output.data / a.data)
class Tan(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a):
if not type(a).__name__ == 'Tensor':
raise Exception("Arg for tangent function must be tensor, got\
{}".format(type(a).__name__))
requires_grad = a.requires_grad
if requires_grad:
ctx.save_for_backward(a)
c = MLlib.Tensor(np.tan(a.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
a = ctx.saved_tensors[0]
return MLlib.Tensor(grad_output.data / np.cos(a.data)**2)
class Sin(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a):
if not type(a).__name__ == 'Tensor':
raise Exception("Arg for sine function must be tensor, got\
{}".format(type(a).__name__))
requires_grad = a.requires_grad
if requires_grad:
ctx.save_for_backward(a)
c = MLlib.Tensor(np.sin(a.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
a = ctx.saved_tensors[0]
return MLlib.Tensor(grad_output.data * np.cos(a.data))
class Cos(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a):
if not type(a).__name__ == 'Tensor':
raise Exception("Arg for cosine function must be tensor, got\
{}".format(type(a).__name__))
requires_grad = a.requires_grad
if requires_grad:
ctx.save_for_backward(a)
c = MLlib.Tensor(np.cos(a.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
return c
@staticmethod
def backward(ctx, grad_output):
a = ctx.saved_tensors[0]
return MLlib.Tensor(-grad_output.data * np.sin(a.data))
class Exp(autograd.Function):
__slots__ = ()
@staticmethod
def forward(ctx, a):
if not type(a).__name__ == 'Tensor':
raise Exception("Arg for exponent function must be tensor, got\
{}".format(type(a).__name__))
requires_grad = a.requires_grad
c = MLlib.Tensor(np.exp(a.data), requires_grad=requires_grad,
is_leaf=not requires_grad)
if requires_grad:
ctx.save_for_backward(c)
return c
@staticmethod
def backward(ctx, grad_output):
grad_out = grad_output.data
o = ctx.saved_tensors[0]
return MLlib.Tensor(grad_out * o.data)
#########################
# #
# #
# ----------------------#
# FUNCTIONAL INTERFACES #
# ----------------------#
# #
# #
#########################
def log(input):
return Log.apply(input)
def sin(input):
return Sin.apply(input)
def cos(input):
return Cos.apply(input)
def tan(input):
return Tan.apply(input)
def exp(input):
return Exp.apply(input)
def absolute(input):
return Absolute.apply(input)