-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmodels.py
2047 lines (1658 loc) · 61.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from MLlib.optimizers import GradientDescent
from MLlib.activations import Sigmoid
from MLlib.utils.misc_utils import generate_weights
from MLlib.utils.decision_tree_utils import partition, find_best_split
from MLlib.utils.decision_tree_utils import class_counts
from MLlib.utils .knn_utils import get_neighbours
from MLlib.utils.naive_bayes_utils import make_likelihood_table
from MLlib.utils.gaussian_naive_bayes_utils import get_mean_var, p_y_given_x
from MLlib.utils.k_means_clustering_utils import initi_centroid, cluster_allot
from MLlib.utils.k_means_clustering_utils import new_centroid, xy_calc
from MLlib.utils.divisive_clustering_utils import KMeans, sse, \
visualize_clusters
from MLlib.utils.pca_utils import PCA_utils, infer_dimension
import MLlib.nn as nn
from collections import Counter, OrderedDict
from MLlib.utils.agglomerative_clustering_utils import compute_distance
import numpy as np
from numpy.random import random
from scipy.stats import norm
from warnings import catch_warnings
from warnings import simplefilter
import pickle
import matplotlib.pyplot as plt
from datetime import datetime
import math
import scipy.cluster.hierarchy as shc
DATE_FORMAT = '%d-%m-%Y_%H-%M-%S'
class LinearRegression():
"""
Implement Linear Regression Model.
ATTRIBUTES
==========
None
METHODS
=======
fit(X,Y,optimizer=GradientDescent,epochs=25,
zeros=False,save_best=False):
Implement the Training of
Linear Regression Model with
suitable optimizer, inititalised
random weights and Dataset's
Input-Output, upto certain number
of epochs.
predict(X):
Return the Predicted Value of
Output associated with Input,
using the weights, which were
tuned by Training Linear Regression
Model.
save(name):
Save the Trained Linear Regression
Model in rob format , in Local
disk.
"""
def fit(
self,
X,
Y,
optimizer=GradientDescent,
epochs=25,
zeros=False,
save_best=False
):
"""
Train the Linear Regression Model
by fitting its associated weights,
according to Dataset's Inputs and
their corresponding Output Values.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
Y: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Output.
optimizer: class
Class of one of the Optimizers like
AdamProp,SGD,MBGD,RMSprop,AdamDelta,
Gradient Descent,etc.
epochs: int
Number of times, the loop to calculate loss
and optimize weights, will going to take
place.
zeros: boolean
Condition to initialize Weights as either
zeroes or some random decimal values.
save_best: boolean
Condition to enable or disable the option
of saving the suitable Weight values for the
model after reaching the region nearby the
minima of Loss-Function with respect to Weights.
epoch_loss: float
The degree of how much the predicted value
is diverted from actual values, given by
implementing one of choosen loss functions
from loss_func.py .
version: str
Descriptive update of Model's Version at each
step of Training Loop, along with Time description
according to DATA_FORMAT.
RETURNS
=======
None
"""
self.weights = generate_weights(X.shape[1], 1, zeros=zeros)
self.best_weights = {"weights": None, "loss": float('inf')}
print("Starting training with loss:",
optimizer.loss_func.loss(X, Y, self.weights))
for epoch in range(1, epochs + 1):
print("======================================")
print("epoch:", epoch)
self.weights = optimizer.iterate(X, Y, self.weights)
epoch_loss = optimizer.loss_func.loss(X, Y, self.weights)
if save_best and epoch_loss < self.best_weights["loss"]:
print("updating best weights (loss: {})".format(epoch_loss))
self.best_weights['weights'] = self.weights
self.best_weights['loss'] = epoch_loss
version = "model_best_" + datetime.now().strftime(DATE_FORMAT)
print("Saving best model version: ", version)
self.save(version)
print("Loss in this step: ", epoch_loss)
version = "model_final_" + datetime.now().strftime(DATE_FORMAT)
print("Saving final model version: ", version)
self.save(version)
print("======================================\n")
print("Finished training with final loss:",
optimizer.loss_func.loss(X, Y, self.weights))
print("=====================================================\n")
def predict(self, X):
"""
Predict the Output Value of
Input, in accordance with
Linear Regression Model.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
RETURNS
=======
ndarray(dtype=float,ndim=1)
Predicted Values corresponding to
each Input of Dataset.
"""
return np.dot(X, self.weights)
def save(self, name):
"""
Save the Model in rob
format for further usage.
PARAMETERS
==========
name: str
Title of the Model's file
to be saved in rob format.
RETURNS
=======
None
"""
with open(name + '.rob', 'wb') as robfile:
pickle.dump(self, robfile)
def plot(self, X, Y, optimizer=GradientDescent, epochs=25):
""""
Plot the graph of loss vs number of iterations
Plot the graph of Output Vs Input
Plot the graph of Predicted output Vs Input
PARAMETERS
==========
X: ndarray(dtype=float, ndim=1)
1-D array of Dataset's input
Y: ndarray(dtype=float, ndim=1)
1-D array of Dataset's output
X_:ndarray(dtype=float, ndim=1)
1-D array of Dataset's input
Y_:ndarray(dtype=float, ndim=1)
1-D array of Predicted output
optimizer: class
Class of one of the Optimizers like
AdamProp,SGD,MBGD,GradientDescent etc
epochs: int
Number of times, the loop to calculate loss
and optimize weights, will going to take
place.
error: float
The degree of how much the predicted value
is diverted from actual values, given by implementing
one of choosen loss functions from loss_func.py .
RETURNS
=========
A 2-D graph with x-axis as Number of
iterations and y-axis as loss.
A 2-D graph with x-axis as input and y_axis
as output
A 2-D graph with x-axis as input and
y-axis as predicted output
"""
l1 = []
l2 = []
self.weights = optimizer.loss_func.loss(X, Y, self.weights)
for epoch in range(1, epochs + 1):
l1.append(epoch)
self.weights = optimizer.iterate(X, Y, self.weights)
error = optimizer.loss_func.loss(X, Y, self.weights)
l2.append(error)
Plot = plt.figure(figsize=(8, 8))
plot1 = Plot.add_subplot(2, 2, 1)
plot2 = Plot.add_subplot(2, 2, 2)
plot3 = Plot.add_subplot(2, 2, 3)
plot1.set_title('Epochs Vs Loss')
plot1.set_xlabel("Epochs")
plot1.set_ylabel("Loss")
plot1.plot(np.array(l1), np.array(l2))
X_ = np.delete(X, 1, 1)
plot2.scatter(X_.flatten(), Y.flatten())
plot2.set_title("Input Vs Actual Output")
plot2.set_xlabel("Input")
plot2.set_ylabel("Output")
Y_ = np.dot(X, self.best_weights["weights"])
plot3.set_xlabel("Input")
plot3.set_ylabel("Predicted Output")
plot3.plot(X_.flatten(), Y_.flatten())
plot3.scatter(X_.flatten(), Y.flatten(), color="Red")
plt.show()
class PolynomialRegression():
"""
Implement Polynomial Regression Model.
ATTRIBUTES
==========
None
METHODS
=======
fit(X,Y,optimizer=GradientDescent,epochs=60, \
zeros=False,save_best=False):
Implement the Training of
Polynomial Regression Model with
suitable optimizer, inititalised
random weights and Dataset's
Input-Output, upto certain number
of epochs.
predict(X):
Return the Predicted Value of
Output associated with Input,
using the weights, which were
tuned by Training Polynomial Regression
Model.
save(name):
Save the Trained Polynomial Regression
Model in rob format , in Local
disk.
"""
def __init__(self, degree):
self.degree = degree
self.weights = 0
self.best_weights = {}
def fit(
self,
X,
Y,
optimizer=GradientDescent,
epochs=200,
zeros=False,
save_best=True
):
"""
Train the Polynomial Regression Model
by fitting its associated weights,
according to Dataset's Inputs and
their corresponding Output Values.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
Update X with X**2, X**3, X**4 terms
Y: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Output.
optimizer: class
Class of one of the Optimizers like
AdamProp,SGD,MBGD,RMSprop,AdamDelta,
Gradient Descent,etc.
epochs: int
Number of times, the loop to calculate loss
and optimize weights, is going to take
place.
zeros: boolean
Condition to initialize Weights as either
zeroes or some random decimal values.
save_best: boolean
Condition to enable or disable the option
of saving the suitable Weight values for the
model after reaching the region nearby the
minima of Loss-Function with respect to Weights.
epoch_loss: float
The degree of how much the predicted value
is diverted from actual values, given by
implementing one of choosen loss functions
from loss_func.py .
version: str
Descriptive update of Model's Version at each
step of Training Loop, along with Time description
according to DATA_FORMAT.
RETURNS
=======
None
"""
M, N = X.shape
P = X[:, 0:1]
# Add polynomial terms to X
# upto degree 'self.degree'.
for i in range(2, self.degree + 1):
P = np.hstack((
P,
(np.power(X[:, 0:1], i)).reshape(M, 1)
))
P = np.hstack((
P,
X[:, 1:2]
))
X = P
self.weights = generate_weights(X.shape[1], 1, zeros=zeros)
self.best_weights = {"weights": self.weights, "loss":
optimizer.loss_func.loss(X, Y, self.weights)}
print("Starting training with loss:",
optimizer.loss_func.loss(X, Y, self.weights))
for epoch in range(1, epochs + 1):
print("======================================")
print("epoch:", epoch)
self.weights = optimizer.iterate(X, Y, self.weights)
epoch_loss = optimizer.loss_func.loss(X, Y, self.weights)
if save_best and epoch_loss < self.best_weights["loss"]:
self.best_weights['weights'] = self.weights
self.best_weights['loss'] = epoch_loss
version = "model_best_" + datetime.now().strftime(DATE_FORMAT)
print("Saving best model version: ", version)
self.save(version)
print("Loss in this step: ", epoch_loss)
version = "model_final_" + datetime.now().strftime(DATE_FORMAT)
print("Saving final model version: ", version)
self.save(version)
print("======================================\n")
print("Finished training with final loss:", self.best_weights['loss'])
print("=====================================================\n")
def predict(self, X):
"""
Predict the Output Value of
Input, in accordance with
Polynomial Regression Model.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
RETURNS
=======
ndarray(dtype=float, ndim=1)
Predicted Values corresponding to
each Input of Dataset.
"""
M, N = X.shape
P = X[:, 0:1]
for i in range(2, self.degree + 1):
P = np.hstack((
P,
(np.power(X[:, 0:1], i)).reshape(M, 1)
))
P = np.hstack((
P,
X[:, 1:2]
))
X = P
return np.dot(X, self.best_weights['weights'])
def save(self, name):
"""
Save the Model in rob
format for further usage.
PARAMETERS
==========
name: str
Title of the Model's file
to be saved in rob format.
RETURNS
=======
None
"""
with open(name + '.rob', 'wb') as robfile:
pickle.dump(self, robfile)
def plot(
self,
X,
Y,
Z,
optimizer=GradientDescent,
epochs=60,
zeros=False,
save_best=False
):
"""
Plot the graph of Loss vs Epochs
Plot the graph of line Of Polynomial Regression
PARAMETERS
==========
X: ndarray(dtype=float, ndim=1)
1-D array of Dataset's input
Y: ndarray(dtype=float, ndim=1)
1-D array of Dataset's output
Z: ndarray(dtype=float, ndim=1)
1-D array of Predicted Values
optimizer: class
Class of one of the Optimizers like
AdamProp,SGD,MBGD,RMSprop,AdamDelta,
Gradient Descent,etc.
epochs: int
Number of times, the loop to calculate loss
and optimize weights, is going to take
place.
zeros: boolean
Condition to initialize Weights as either
zeroes or some random decimal values.
save_best: boolean
Condition to enable or disable the option
of saving the suitable Weight values for the
model after reaching the region nearby the
minima of Loss-Function with respect to Weights.
RETURNS
=======
None
"""
M, N = X.shape
P = X[:, 0:1]
for i in range(2, self.degree + 1):
P = np.hstack((
P,
(np.power(X[:, 0:1], i)).reshape(M, 1)
))
P = np.hstack((
P,
X[:, 1:2]
))
X = P
m = []
List = []
self.weights = generate_weights(X.shape[1], 1, zeros=zeros)
self.best_weights = {"weights": self.weights, "loss":
optimizer.loss_func.loss(X, Y, self.weights)}
print("Starting training with loss:",
optimizer.loss_func.loss(X, Y, self.weights))
for epoch in range(1, epochs + 1):
m.append(epoch)
self.weights = optimizer.iterate(X, Y, self.weights)
epoch_loss = optimizer.loss_func.loss(X, Y, self.weights)
if save_best and epoch_loss < self.best_weights["loss"]:
self.best_weights['weights'] = self.weights
self.best_weights['loss'] = epoch_loss
List.append(epoch_loss)
x = np.array(m)
y = np.array(List)
plt.figure(figsize=(10, 5))
plt.xlabel('EPOCHS', family='serif', fontsize=15)
plt.ylabel('LOSS', family='serif', fontsize=15)
plt.scatter(x, y, color='navy')
plt.show()
z = np.reshape(Z, (1, M))
pred_value = z[0]
true_value = Y[0]
A = []
for i in range(0, len(Y[0])):
A.append(i)
x_axis = np.array(A)
plt.xlabel('Number of Datasets', family='serif', fontsize=15)
plt.ylabel('Values', family='serif', fontsize=15)
plt.scatter(x_axis, true_value, label="True Values")
plt.plot(x_axis, pred_value, label="Predicted Values")
plt.legend(loc="upper right")
plt.show()
class LogisticRegression(LinearRegression):
"""
Implements Logistic Regression Model.
ATTRIBUTES
==========
LinearRegression: Class
Parent Class from where Output Prediction
Value is expressed, after Linear Weighted
Combination of Input is calculated .
METHODS
=======
predict(X):
Return the probabilistic value
of an Input, belonging to either
class 0 or class 1, by using final
weights from Trained Logistic
Regression Model.
classify(X):
Return the Class corresponding to
each Input of Dataset, Predicted by
Trained Logistic Regression Model,
i.e in this scenario, either class 0
or class 1.
"""
def predict(self, X):
"""
Predict the Probabilistic Value of
Input, in accordance with
Logistic Regression Model.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
prediction: ndarray(dtype=float,ndim=1)
1-D Array of Predicted Values
corresponding to each Input of
Dataset.
RETURNS
=======
ndarray(dtype=float,ndim=1)
1-D Array of Probabilistic Values
of whether the particular Input
belongs to class 0 or class 1.
"""
prediction = np.dot(X, self.weights).T
sigmoid = Sigmoid()
return sigmoid.activation(prediction)
def classify(self, X):
"""
Classify the Input, according to
Logistic Regression Model,i.e in this
case, either class 0 or class 1.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
prediction: ndarray(dtype=float,ndim=1)
1-D Array of Predicted Values
corresponding to their Inputs.
actual_predictions: ndarray(dtype=int,ndim=1)
1-D Array of Output, associated
to each Input of Dataset,
Predicted by Trained Logistic
Regression Model.
RETURNS
=======
ndarray
1-D Array of Predicted classes
(either 0 or 1) corresponding
to their inputs.
"""
prediction = np.dot(X, self.weights).T
sigmoid = Sigmoid()
prediction = sigmoid.activation(prediction)
actual_predictions = np.zeros((1, X.shape[0]))
for i in range(prediction.shape[1]):
if prediction[0][i] > 0.5:
actual_predictions[0][i] = 1
return actual_predictions
def Plot(self,
X,
Y,
actual_predictions,
optimizer=GradientDescent,
epochs=25,
zeros=False
):
"""
Plots for Logistic Regression.
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Input.
Y: ndarray(dtype=float,ndim=1)
1-D Array of Dataset's Output.
actual_predictions: ndarray(dtype=int,ndim=1)
1-D Array of Output, associated
to each Input of Dataset,
Predicted by Trained Logistic
Regression Model.
optimizer: class
Class of one of the Optimizers like
AdamProp,SGD,MBGD,GradientDescent etc
epochs: int
Number of times, the loop to calculate loss
and optimize weights, will going to take
place.
error: float
The degree of how much the predicted value
is diverted from actual values, given by implementing
one of choosen loss functions from loss_func.py .
zeros: boolean
Condition to initialize Weights as either
zeroes or some random decimal values.
RETURNS
=======
2-D graph of Sigmoid curve,
Comparision Plot of True output and Predicted output versus Feacture.
2-D graph of Loss versus Number of iterations.
"""
Plot = plt.figure(figsize=(8, 8))
plot1 = Plot.add_subplot(2, 2, 1)
plot2 = Plot.add_subplot(2, 2, 2)
plot3 = Plot.add_subplot(2, 2, 3)
# 2-D graph of Sigmoid curve.
x = np.linspace(- max(X[:, 0]) - 2, max(X[:, 0]) + 2, 1000)
plot1.set_title('Sigmoid curve')
plot1.grid()
sigmoid = Sigmoid()
plot1.scatter(X.T[0], Y, color="red", marker="+", label="labels")
plot1.plot(x, 0 * x + 0.5, linestyle="--",
label="Decision bound, y=0.5")
plot1.plot(x, sigmoid.activation(x),
color="green", label='Sigmoid function: 1 / (1 + e^-x)'
)
plot1.legend()
# Comparision Plot of Actual output and Predicted output vs Feacture.
plot2.set_title('Actual output and Predicted output versus Feacture')
plot2.set_xlabel("x")
plot2.set_ylabel("y")
plot2.scatter(X[:, 0], Y, color="orange", label='Actual output')
plot2.grid()
plot2.scatter(X[:, 0], actual_predictions,
color="blue", marker="+", label='Predicted output'
)
plot2.legend()
# 2-D graph of Loss versus Number of iterations.
plot3.set_title("Loss versus Number of iterations")
plot3.set_xlabel("iterations")
plot3.set_ylabel("Cost")
iterations = []
cost = []
self.weights = generate_weights(X.shape[1], 1, zeros=zeros)
for epoch in range(1, epochs + 1):
iterations.append(epoch)
self.weights = optimizer.iterate(X, Y, self.weights)
error = optimizer.loss_func.loss(X, Y, self.weights)
cost.append(error)
plot3.plot(np.array(iterations), np.array(cost))
plt.show()
class DecisionTreeClassifier():
"""
A class to implement the Decision Tree Algorithm.
ATTRIBUTES
==========
None
METHODS
=======
print_tree(rows, head, spacing = "")
To print the decision tree of the rows
in an organised manner.
classify(rows, head, prediction_val)
To determine and return the predictions
of the subsets of the dataset.
"""
def print_tree(self, rows, head, spacing=""):
"""
A tree printing function.
PARAMETERS
==========
rows: list
A list of lists to store the dataset.
head: list
A list to store the headings of the
columns of the dataset.
spacing: String
To store and update the spaces to
print the tree in an organised manner.
RETURNS
=======
None
"""
# Try partitioning the dataset on each of the unique attribute,
# calculate the gini impurity,
# and return the question that produces the least gini impurity.
gain, question = find_best_split(rows, head)
# Base case: we've reached a leaf
if gain == 0:
print(spacing + "Predict", class_counts(rows, len(rows[0]) - 1))
return
# If we reach here, we have found a useful feature / value
# to partition on.
true_rows, false_rows = partition(rows, question)
# Print the question at this node
print(spacing + str(question))
# Call this function recursively on the true branch
print(spacing + '--> True:')
self.print_tree(true_rows, head, spacing + " ")
# Call this function recursively on the false branch
print(spacing + '--> False:')
self.print_tree(false_rows, head, spacing + " ")
def classify(self, rows, head, prediction_val):
"""
A function to make predictions of
the subsets of the dataset.
PARAMETERS
==========
rows: list
A list of lists to store the subsets
of the dataset.
head: list
A list to store the headings of the
columns of the subset of the dataset.
prediction_val: dictionary
A dictionary to update and return the
predictions of the subsets of the
dataset.
RETURNS
=======
prediction_val
Dictionary to return the predictions
corresponding to the subsets of the
dataset.
"""
N = len(rows[0])
# Finding random indexes for columns
# to collect random samples of the dataset.
indexcol = []
for j in range(0, 5):
r = np.random.randint(0, N - 2)
if r not in indexcol:
indexcol.append(r)
row = []
for j in rows:
L = []
for k in indexcol:
L.append(j[k])
row.append(L)
# add last column to the random sample so created.
for j in range(0, len(row)):
row[j].append(rows[j][N - 1])
rows = row
# Try partitioning the dataset on each of the unique attribute,
# calculate the gini impurity,
# and return the question that produces the least gini impurity.
gain, question = find_best_split(rows, head)
# Base case: we've reached a leaf
if gain == 0:
# Get the predictions of the current set of rows.
p = class_counts(rows, len(rows[0]) - 1)
for d in prediction_val:
for j in p:
if d == j:
# update the predictions to be returned.
prediction_val[d] = prediction_val[d] + p[j]
return prediction_val
# If we reach here, we have found a useful feature / value
# to partition on.
true_rows, false_rows = partition(rows, question)
# Recursively build the true branch.
self.classify(true_rows, head, prediction_val)
# Recursively build the false branch.
self.classify(false_rows, head, prediction_val)
# Return the dictionary of the predictions
# at the end of the recursion.
return prediction_val
class RandomForestClassifier(DecisionTreeClassifier):
"""
A class to implement the Random Forest Classification Algorithm.
ATTRIBUTES
==========
DecisionTreeClassifier: Class
Parent Class from where the predictions
for the subsets of the dataset are made.
METHODS
=======
predict(A, n_estimators=100):
Print the value that appears the
highest in the list of predictions
of the subsets of the dataset.
"""
def predict(self, A, head, n_estimators=100):
"""
Determine the predictions of the
subsets of the dataset through the
DecisionTreeClassifier class and
print the mode of the predicted values.
PARAMETERS
==========
A: ndarray(dtype=int,ndim=2)
2-D Array of Dataset's Input
n_estimators: int
Number of Decision Trees to be
iterated over for the classification.
RETURNS
=======
None
"""
prediction = {}
print("Predictions of individual decision trees")
# Iterate to collect predictions of
# 100 Decision Trees after taking
# random samples from the dataset.
for i in range(n_estimators):
M = len(A)
# Finding random indexes for rows
# to collect the bootstrapped samples
# of the dataset.
indexrow = np.random.randint(0, M - 1, 6)
rows = []
for j in indexrow:
rows.append(A[j])
label = len(rows[0]) - 1
# Get prediction values for the rows
prediction_val = class_counts(rows, label)
for d in prediction_val:
prediction_val[d] = 0
# Create object of class DecisionTreeClassifier
RandomF = DecisionTreeClassifier()
# Store the returned dictionary of the