|
| 1 | +from MLlib import Tensor |
| 2 | +import MLlib.nn as nn |
| 3 | +from MLlib.loss_func import MSELoss |
| 4 | +from MLlib.optim import SGDWithMomentum |
| 5 | +import numpy as np |
| 6 | +from MLlib.functional import absolute |
| 7 | + |
| 8 | + |
| 9 | +class L1_Regularizer: |
| 10 | + """ |
| 11 | + Implement L1 Regularizer a.k.a. Lasso Regression |
| 12 | +
|
| 13 | + ATTRIBUTES |
| 14 | + ========== |
| 15 | +
|
| 16 | + None |
| 17 | +
|
| 18 | + METHODS |
| 19 | + ======= |
| 20 | +
|
| 21 | + get_loss(parameters, Lambda) |
| 22 | + Calculates and returns the L1 Regression Loss |
| 23 | +
|
| 24 | + """ |
| 25 | + |
| 26 | + def __init__(self, parameters, Lambda): |
| 27 | + """ |
| 28 | + PARAMETERS |
| 29 | + ========== |
| 30 | +
|
| 31 | + params: list or iterator |
| 32 | + Parameters which need to be regularized |
| 33 | +
|
| 34 | + Lambda: float |
| 35 | + Regularization rate |
| 36 | +
|
| 37 | + """ |
| 38 | + if type(parameters).__name__ == 'Tensor': |
| 39 | + self.params = (parameters,) |
| 40 | + else: |
| 41 | + self.params = tuple(parameters) |
| 42 | + |
| 43 | + self.Lambda = Lambda |
| 44 | + |
| 45 | + def get_loss(self): |
| 46 | + """ |
| 47 | + Calculates and returns the L2 Regression Loss |
| 48 | +
|
| 49 | + """ |
| 50 | + reg_loss = Tensor(0., requires_grad=True) |
| 51 | + |
| 52 | + for param in self.params: |
| 53 | + reg_loss += absolute(param).sum() |
| 54 | + |
| 55 | + return (reg_loss * self.Lambda) |
| 56 | + |
| 57 | + |
| 58 | +class L2_Regularizer: |
| 59 | + """ |
| 60 | + Implement L2 Regularizer a.k.a. Ridge Regression |
| 61 | +
|
| 62 | + ATTRIBUTES |
| 63 | + ========== |
| 64 | +
|
| 65 | + None |
| 66 | +
|
| 67 | + METHODS |
| 68 | + ======= |
| 69 | +
|
| 70 | + get_loss(parameters, Lambda) |
| 71 | + Calculates and returns the L2 Regression Loss |
| 72 | +
|
| 73 | + """ |
| 74 | + |
| 75 | + def __init__(self, parameters, Lambda): |
| 76 | + """ |
| 77 | + PARAMETERS |
| 78 | + ========== |
| 79 | +
|
| 80 | + params: list or iterator |
| 81 | + Parameters which need to be regularized |
| 82 | +
|
| 83 | + Lambda: float |
| 84 | + Regularization rate |
| 85 | +
|
| 86 | + """ |
| 87 | + |
| 88 | + if type(parameters).__name__ == 'Tensor': |
| 89 | + self.params = (parameters,) |
| 90 | + else: |
| 91 | + self.params = tuple(parameters) |
| 92 | + |
| 93 | + self.Lambda = Lambda |
| 94 | + |
| 95 | + def get_loss(self): |
| 96 | + """ |
| 97 | + Calculates the returns the L2 Regression Loss |
| 98 | +
|
| 99 | + """ |
| 100 | + reg_loss = Tensor(0., requires_grad=True) |
| 101 | + for param in self.params: |
| 102 | + reg_loss += (param**2).sum() |
| 103 | + return (reg_loss*self.Lambda) |
| 104 | + |
| 105 | + |
| 106 | +class LinearRegWith_Regularization(nn.Module): |
| 107 | + """" |
| 108 | + LinearRegWith_Regularization |
| 109 | +
|
| 110 | + It inherits the Class Module |
| 111 | +
|
| 112 | + It implements Linear Regression with different types of |
| 113 | + Regularizer(L1 and L2) |
| 114 | +
|
| 115 | + """ |
| 116 | + |
| 117 | + def __init__(self, |
| 118 | + in_features, |
| 119 | + regularizer, |
| 120 | + loss_fn=MSELoss, |
| 121 | + optimizer=SGDWithMomentum, |
| 122 | + Lambda=10): |
| 123 | + """ |
| 124 | + PARAMETERS |
| 125 | + ========== |
| 126 | +
|
| 127 | + in_features: int |
| 128 | + number of features |
| 129 | +
|
| 130 | + regularizer: class |
| 131 | + Class of one of the Regularizers like |
| 132 | + L1_Regularizer and L2_Regularizer |
| 133 | +
|
| 134 | + optimizer: class |
| 135 | + Class of one of the Optimizers like |
| 136 | + SGD and SGDWithMomentum |
| 137 | +
|
| 138 | + loss_fn: class |
| 139 | + Class of one of the loss functions like |
| 140 | + MSELoss |
| 141 | +
|
| 142 | + Lambda: float |
| 143 | + Regularization rate |
| 144 | +
|
| 145 | + """ |
| 146 | + super().__init__() |
| 147 | + self.linear_layer = nn.Linear(in_features, 1) |
| 148 | + self.loss_fn = loss_fn() |
| 149 | + self.regularizer = regularizer(self.linear_layer.weights, Lambda) |
| 150 | + self.optimizer = optimizer(self.linear_layer.parameters()) |
| 151 | + |
| 152 | + def forward(self, input): |
| 153 | + """ |
| 154 | + Forward pass |
| 155 | + """ |
| 156 | + return self.linear_layer(input) |
| 157 | + |
| 158 | + def fit(self, x, y, epochs=1): |
| 159 | + """ |
| 160 | + Train LinearRegWith_Regularization Model |
| 161 | + by fitting its associated Regularizer |
| 162 | +
|
| 163 | + PARAMETERS |
| 164 | + ========== |
| 165 | +
|
| 166 | + x: list or iterator |
| 167 | + input Dataset |
| 168 | +
|
| 169 | + y: list or iterator |
| 170 | + input Dataset |
| 171 | +
|
| 172 | + epochs: int |
| 173 | + Number of times, the loop to calculate loss |
| 174 | + and optimize weights, will going to take |
| 175 | + place. |
| 176 | +
|
| 177 | + RETURNS |
| 178 | + ======= |
| 179 | + output: ndarray(dtype=float, ndim=1) |
| 180 | + Total loss |
| 181 | +
|
| 182 | + """ |
| 183 | + output = [] |
| 184 | + for i in range(epochs): |
| 185 | + # for batch in train_batches: |
| 186 | + prediction = self(x) |
| 187 | + loss = self.loss_fn(prediction, y) \ |
| 188 | + + self.regularizer.get_loss()/(2*prediction.shape[0]) |
| 189 | + if (i+1) % 100 == 0: |
| 190 | + output.append(loss.data) |
| 191 | + loss.backward() |
| 192 | + self.optimizer.step() |
| 193 | + self.optimizer.zero_grad() |
| 194 | + |
| 195 | + return np.array(output) |
0 commit comments