-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathexample-writer.cpp
309 lines (255 loc) · 12.1 KB
/
example-writer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#include <cassert>
#include <cmath>
#include <random>
#include <copc-lib/geometry/vector3.hpp>
#include <copc-lib/hierarchy/key.hpp>
#include <copc-lib/io/copc_reader.hpp>
#include <copc-lib/io/copc_writer.hpp>
#include <copc-lib/las/header.hpp>
#include <copc-lib/laz/compressor.hpp>
#include <copc-lib/laz/decompressor.hpp>
using namespace copc;
using namespace std;
// In this example, we'll filter the autzen dataset to only contain depth levels 0-3.
void TrimFileExample(bool compressor_example_flag)
{
// We'll get our point data from this file
FileReader reader("autzen-classified.copc.laz");
auto old_header = reader.CopcConfig().LasHeader();
{
// Copy the config to the new file
auto cfg = reader.CopcConfig();
// Now, we can create our actual writer
FileWriter writer("autzen-trimmed.copc.laz", cfg);
// GetAllChildrenOfPage will load the entire hierarchy under a given key
for (const auto &node : reader.GetAllChildrenOfPage(VoxelKey::RootKey()))
{
// In this example, we'll only save up to depth level 3.
if (node.key.d > 3)
continue;
if (!compressor_example_flag)
{
// It's much faster to write and read compressed data, to avoid compression and decompression
writer.AddNodeCompressed(
node.key, reader.GetPointDataCompressed(node), node.point_count,
node.page_key); // We can provide the optional page key to preserve the page hierarchy (here root)
}
else
{
// Alternatively, if we have uncompressed data and want to compress it without writing it to the file,
// (for example, compress multiple nodes in parallel and have one thread writing the data),
// we can use the Compressor class:
std::vector<char> uncompressed_points = reader.GetPointData(node);
std::vector<char> compressed_points =
laz::Compressor::CompressBytes(uncompressed_points, *writer.CopcConfig()->LasHeader());
writer.AddNodeCompressed(node.key, compressed_points, node.point_count, node.page_key);
}
}
// Make sure we call close to finish writing the file!
writer.Close();
}
// Now, let's test our new file
FileReader new_reader("autzen-trimmed.copc.laz");
// Let's go through each node we've written and make sure it matches the original
for (const auto &node : new_reader.GetAllNodes())
{
assert(new_reader.GetPointDataCompressed(node) == reader.GetPointDataCompressed(node.key));
// Similarly, we could retrieve the compressed node data from the file
// and decompress it later using the Decompressor class
if (compressor_example_flag)
{
las::LasHeader header = new_reader.CopcConfig().LasHeader();
std::vector<char> compressed_points = reader.GetPointDataCompressed(node.key);
std::vector<char> uncompressed_points =
laz::Decompressor::DecompressBytes(compressed_points, header, node.point_count);
}
}
}
// In this example, we'll filter the points in the autzen dataset based on bounds.
void BoundsTrimFileExample()
{
// We'll get our point data from this file
FileReader reader("autzen-classified.copc.laz");
auto old_header = reader.CopcConfig().LasHeader();
// Take horizontal 2D box of [400,400] roughly in the middle of the point cloud.
auto middle = (old_header.max + old_header.min) / 2;
Box box(middle.x - 200, middle.y - 200, middle.x + 200, middle.y + 200);
{
// Copy the config to the new file
auto cfg = reader.CopcConfig();
// Now, we can create our actual writer, here we will update the Point Format ID in the new file to be 8
FileWriter writer("autzen-bounds-trimmed.copc.laz", cfg, 8);
for (const auto &node : reader.GetAllNodes())
{
if (node.key.Within(old_header, box))
{
// If node is within the box then add all points (without decompressing)
writer.AddNodeCompressed(node.key, reader.GetPointDataCompressed(node), node.point_count,
node.page_key);
}
else if (node.key.Intersects(old_header, box))
{
// If node only crosses the box then decompress points data and get subset of points that are within the
// box
auto point_vector = reader.GetPoints(node).GetWithin(box);
auto points = las::Points(point_vector);
// Here we update the Point Format ID to 8 since we updated the point format ID of the writer to 8
points.ToPointFormat(8);
writer.AddNode(node.key, points, node.page_key);
}
}
// Make sure we call close to finish writing the file!
writer.Close();
}
// Now, let's test our new file
FileReader new_reader("autzen-bounds-trimmed.copc.laz");
// Let's go through each point and make sure they fit within the Box
for (const auto &node : new_reader.GetAllNodes())
{
auto points = new_reader.GetPoints(node);
assert(points.Within(box));
}
}
// In this example, we'll filter the points in the autzen dataset based on resolution.
void ResolutionTrimFileExample()
{
// We'll get our point data from this file
FileReader reader("autzen-classified.copc.laz");
auto old_header = reader.CopcConfig().LasHeader();
double resolution = 10;
auto target_depth = reader.GetDepthAtResolution(resolution);
// Check that the resolution of the target depth is equal or smaller to the requested resolution.
assert(VoxelKey::GetResolutionAtDepth(target_depth, old_header, reader.CopcConfig().CopcInfo()) <= resolution);
{
// Copy the config to the new file
auto cfg = reader.CopcConfig();
// Now, we can create our actual writer
FileWriter writer("autzen-resolution-trimmed.copc.laz", cfg);
for (const auto &node : reader.GetAllNodes())
{
if (node.key.d <= target_depth)
{
writer.AddNodeCompressed(node.key, reader.GetPointDataCompressed(node), node.point_count,
node.page_key);
}
}
// Make sure we call close to finish writing the file!
writer.Close();
}
// Now, let's test our new file
FileReader new_reader("autzen-resolution-trimmed.copc.laz");
auto new_header = new_reader.CopcConfig().LasHeader();
auto new_copc_info = new_reader.CopcConfig().CopcInfo();
// Let's go through each node we've written and make sure the resolution is correct
for (const auto &node : new_reader.GetAllNodes())
{
assert(node.key.d <= target_depth);
}
// Let's make sure the max resolution is at least as much as we requested
auto max_octree_depth = new_reader.GetDepthAtResolution(0);
assert(VoxelKey::GetResolutionAtDepth(max_octree_depth, new_header, new_copc_info) <= resolution);
}
// constants
const Vector3 MIN_BOUNDS = {-2000, -5000, 20}; // Scaled coordinates
const Vector3 MAX_BOUNDS = {5000, 1034, 125}; // Scaled coordinates
const int NUM_POINTS = 3000;
// random num devices
std::random_device rd; // obtain a random number from hardware
std::mt19937 gen(rd()); // seed the generator
// This function will generate `NUM_POINTS` random points within the bounds
las::Points RandomPoints(const VoxelKey &key, const las::LasHeader &header, int number_points)
{
// Voxel cube dimensions will be calculated from the maximum span of the file
double span = std::max({MAX_BOUNDS.x - MIN_BOUNDS.x, MAX_BOUNDS.y - MIN_BOUNDS.y, MAX_BOUNDS.z - MIN_BOUNDS.z});
// Step size accounts for depth level
double step = span / std::pow(2, key.d);
double x_min = header.min.x + (step * key.x);
double y_min = header.min.y + (step * key.y);
double z_min = header.min.z + (step * key.z);
// Random num generators between the min and max spatial bounds of the voxel
std::uniform_int_distribution<> rand_x(header.RemoveScaleX(std::max(header.min.x, x_min)),
header.RemoveScaleX(std::min(header.max.x, x_min + step)));
std::uniform_int_distribution<> rand_y(header.RemoveScaleY(std::max(header.min.y, y_min)),
header.RemoveScaleY(std::min(header.max.y, y_min + step)));
std::uniform_int_distribution<> rand_z(header.RemoveScaleZ(std::max(header.min.z, z_min)),
header.RemoveScaleZ(std::min(header.max.z, z_min + step)));
// Create a Points object based on the LAS header
las::Points points(header);
// Populate the points
for (int i = 0; i < number_points; i++)
{
// Create a point with a given point format
// The use of las::Point constructor is strongly discouraged, instead use las::Points::CreatePoint
auto point = points.CreatePoint();
// point has getters/setters for all attributes
point->X(header.ApplyScaleX(rand_x(gen)));
point->Y(header.ApplyScaleY(rand_y(gen)));
point->Z(header.ApplyScaleZ(rand_z(gen)));
// For visualization purposes
point->PointSourceId(key.d + key.x + key.y + key.z);
points.AddPoint(point);
}
return points;
}
// In this example, we'll create our own file from scratch
void NewFileExample()
{
// Create our new file with the specified format, scale, offset, wkt, and extended_stats
CopcConfigWriter cfg(8, {0.1, 0.1, 0.1}, {50, 50, 50}, "TEST_WKT", {}, true);
// copc-lib will not automatically compute the min/max of added points
// so we will have to calculate it ourselves
cfg.LasHeader()->min = MIN_BOUNDS;
cfg.LasHeader()->max = MAX_BOUNDS;
cfg.CopcInfo()->spacing = 10;
// Now, we can create our COPC writer
FileWriter writer("new-copc.copc.laz", cfg);
auto header = writer.CopcConfig()->LasHeader();
// Set the COPC Extents
auto extents = writer.CopcConfig()->CopcExtents();
extents->Intensity()->minimum = 0;
extents->Intensity()->maximum = 10000;
extents->Intensity()->mean = 50;
extents->Intensity()->var = 5;
extents->Classification()->minimum = 5;
extents->Classification()->maximum = 201;
// First we'll add a root node
VoxelKey key(0, 0, 0, 0);
auto points = RandomPoints(key, *header, NUM_POINTS);
// The node will be written to the file when we call AddNode
writer.AddNode(key, points);
// We can also add pages, as long as the key we specify is a child of the parent page
{
auto page_key = VoxelKey(1, 1, 1, 0);
// Once our page is created, we can add nodes to it like before
key = VoxelKey(1, 1, 1, 0);
points = RandomPoints(key, *header, NUM_POINTS);
writer.AddNode(key, points, page_key);
key = VoxelKey(2, 2, 2, 0);
points = RandomPoints(key, *header, NUM_POINTS);
writer.AddNode(key, points, page_key);
// We can nest subpages as much as we want, as long as they are children of the parent
auto sub_page_key = VoxelKey(3, 4, 4, 0);
points = RandomPoints(sub_page_key, *header, NUM_POINTS);
writer.AddNode(sub_page_key, points, sub_page_key);
}
// Make sure we call close to finish writing the file!
writer.Close();
// We can check that the spatial bounds of the file have been respected
FileReader reader("new-copc.copc.laz");
assert(reader.ValidateSpatialBounds());
// We can get the keys of all existing pages
auto page_keys = reader.GetPageList();
// Check that a page exists
assert(std::find(page_keys.begin(), page_keys.end(), VoxelKey(3, 4, 4, 0)) != page_keys.end());
// We can get the page of any node (useful to copy the file along with the hierarchy)
auto node = reader.FindNode(VoxelKey(2, 2, 2, 0));
assert(node.page_key == VoxelKey(1, 1, 1, 0));
}
int main()
{
TrimFileExample(false);
TrimFileExample(true);
BoundsTrimFileExample();
ResolutionTrimFileExample();
NewFileExample();
}