forked from libjpeg-turbo/libjpeg-turbo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjdmaster.c
895 lines (831 loc) · 33.7 KB
/
jdmaster.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/*
* jdmaster.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2002-2009 by Guido Vollbeding.
* Lossless JPEG Modifications:
* Copyright (C) 1999, Ken Murchison.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2011, 2016, 2019, 2022, D. R. Commander.
* Copyright (C) 2013, Linaro Limited.
* Copyright (C) 2015, Google, Inc.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains master control logic for the JPEG decompressor.
* These routines are concerned with selecting the modules to be executed
* and with determining the number of passes and the work to be done in each
* pass.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jpegapicomp.h"
#include "jdmaster.h"
/*
* Determine whether merged upsample/color conversion should be used.
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
*/
LOCAL(boolean)
use_merged_upsample(j_decompress_ptr cinfo)
{
#ifdef UPSAMPLE_MERGING_SUPPORTED
/* Merging is the equivalent of plain box-filter upsampling */
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
return FALSE;
/* jdmerge.c only supports YCC=>RGB and YCC=>RGB565 color conversion */
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
(cinfo->out_color_space != JCS_RGB &&
cinfo->out_color_space != JCS_RGB565 &&
cinfo->out_color_space != JCS_EXT_RGB &&
cinfo->out_color_space != JCS_EXT_RGBX &&
cinfo->out_color_space != JCS_EXT_BGR &&
cinfo->out_color_space != JCS_EXT_BGRX &&
cinfo->out_color_space != JCS_EXT_XBGR &&
cinfo->out_color_space != JCS_EXT_XRGB &&
cinfo->out_color_space != JCS_EXT_RGBA &&
cinfo->out_color_space != JCS_EXT_BGRA &&
cinfo->out_color_space != JCS_EXT_ABGR &&
cinfo->out_color_space != JCS_EXT_ARGB))
return FALSE;
if ((cinfo->out_color_space == JCS_RGB565 &&
cinfo->out_color_components != 3) ||
(cinfo->out_color_space != JCS_RGB565 &&
cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space]))
return FALSE;
/* and it only handles 2h1v or 2h2v sampling ratios */
if (cinfo->comp_info[0].h_samp_factor != 2 ||
cinfo->comp_info[1].h_samp_factor != 1 ||
cinfo->comp_info[2].h_samp_factor != 1 ||
cinfo->comp_info[0].v_samp_factor > 2 ||
cinfo->comp_info[1].v_samp_factor != 1 ||
cinfo->comp_info[2].v_samp_factor != 1)
return FALSE;
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size ||
cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size ||
cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size)
return FALSE;
/* ??? also need to test for upsample-time rescaling, when & if supported */
return TRUE; /* by golly, it'll work... */
#else
return FALSE;
#endif
}
/*
* Compute output image dimensions and related values.
* NOTE: this is exported for possible use by application.
* Hence it mustn't do anything that can't be done twice.
*/
#if JPEG_LIB_VERSION >= 80
GLOBAL(void)
#else
LOCAL(void)
#endif
jpeg_core_output_dimensions(j_decompress_ptr cinfo)
/* Do computations that are needed before master selection phase.
* This function is used for transcoding and full decompression.
*/
{
#ifdef IDCT_SCALING_SUPPORTED
int ci;
jpeg_component_info *compptr;
if (!cinfo->master->lossless) {
/* Compute actual output image dimensions and DCT scaling choices. */
if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom) {
/* Provide 1/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 1;
cinfo->_min_DCT_v_scaled_size = 1;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 2) {
/* Provide 2/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 2L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 2L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 2;
cinfo->_min_DCT_v_scaled_size = 2;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 3) {
/* Provide 3/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 3L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 3L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 3;
cinfo->_min_DCT_v_scaled_size = 3;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 4) {
/* Provide 4/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 4L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 4L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 4;
cinfo->_min_DCT_v_scaled_size = 4;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 5) {
/* Provide 5/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 5L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 5L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 5;
cinfo->_min_DCT_v_scaled_size = 5;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 6) {
/* Provide 6/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 6L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 6L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 6;
cinfo->_min_DCT_v_scaled_size = 6;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 7) {
/* Provide 7/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 7L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 7L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 7;
cinfo->_min_DCT_v_scaled_size = 7;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 8) {
/* Provide 8/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 8L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 8L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 8;
cinfo->_min_DCT_v_scaled_size = 8;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 9) {
/* Provide 9/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 9L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 9L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 9;
cinfo->_min_DCT_v_scaled_size = 9;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 10) {
/* Provide 10/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 10L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 10L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 10;
cinfo->_min_DCT_v_scaled_size = 10;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 11) {
/* Provide 11/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 11L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 11L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 11;
cinfo->_min_DCT_v_scaled_size = 11;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 12) {
/* Provide 12/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 12L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 12L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 12;
cinfo->_min_DCT_v_scaled_size = 12;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 13) {
/* Provide 13/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 13L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 13L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 13;
cinfo->_min_DCT_v_scaled_size = 13;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 14) {
/* Provide 14/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 14L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 14L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 14;
cinfo->_min_DCT_v_scaled_size = 14;
} else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 15) {
/* Provide 15/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 15L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 15L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 15;
cinfo->_min_DCT_v_scaled_size = 15;
} else {
/* Provide 16/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width * 16L, (long)DCTSIZE);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height * 16L, (long)DCTSIZE);
cinfo->_min_DCT_h_scaled_size = 16;
cinfo->_min_DCT_v_scaled_size = 16;
}
/* Recompute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
compptr->_DCT_h_scaled_size = cinfo->_min_DCT_h_scaled_size;
compptr->_DCT_v_scaled_size = cinfo->_min_DCT_v_scaled_size;
}
} else
#endif /* !IDCT_SCALING_SUPPORTED */
{
/* Hardwire it to "no scaling" */
cinfo->output_width = cinfo->image_width;
cinfo->output_height = cinfo->image_height;
/* jdinput.c has already initialized DCT_scaled_size,
* and has computed unscaled downsampled_width and downsampled_height.
*/
}
}
/*
* Compute output image dimensions and related values.
* NOTE: this is exported for possible use by application.
* Hence it mustn't do anything that can't be done twice.
* Also note that it may be called before the master module is initialized!
*/
GLOBAL(void)
jpeg_calc_output_dimensions(j_decompress_ptr cinfo)
/* Do computations that are needed before master selection phase */
{
#ifdef IDCT_SCALING_SUPPORTED
int ci;
jpeg_component_info *compptr;
#endif
/* Prevent application from calling me at wrong times */
if (cinfo->global_state != DSTATE_READY)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Compute core output image dimensions and DCT scaling choices. */
jpeg_core_output_dimensions(cinfo);
#ifdef IDCT_SCALING_SUPPORTED
if (!cinfo->master->lossless) {
/* In selecting the actual DCT scaling for each component, we try to
* scale up the chroma components via IDCT scaling rather than upsampling.
* This saves time if the upsampler gets to use 1:1 scaling.
* Note this code adapts subsampling ratios which are powers of 2.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
int ssize = cinfo->_min_DCT_scaled_size;
while (ssize < DCTSIZE &&
((cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) %
(compptr->h_samp_factor * ssize * 2) == 0) &&
((cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size) %
(compptr->v_samp_factor * ssize * 2) == 0)) {
ssize = ssize * 2;
}
#if JPEG_LIB_VERSION >= 70
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize;
#else
compptr->DCT_scaled_size = ssize;
#endif
}
/* Recompute downsampled dimensions of components;
* application needs to know these if using raw downsampled data.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Size in samples, after IDCT scaling */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long)cinfo->image_width *
(long)(compptr->h_samp_factor *
compptr->_DCT_scaled_size),
(long)(cinfo->max_h_samp_factor * DCTSIZE));
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long)cinfo->image_height *
(long)(compptr->v_samp_factor *
compptr->_DCT_scaled_size),
(long)(cinfo->max_v_samp_factor * DCTSIZE));
}
} else
#endif /* IDCT_SCALING_SUPPORTED */
{
/* Hardwire it to "no scaling" */
cinfo->output_width = cinfo->image_width;
cinfo->output_height = cinfo->image_height;
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
* and has computed unscaled downsampled_width and downsampled_height.
*/
}
/* Report number of components in selected colorspace. */
/* Probably this should be in the color conversion module... */
switch (cinfo->out_color_space) {
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
break;
case JCS_RGB:
case JCS_EXT_RGB:
case JCS_EXT_RGBX:
case JCS_EXT_BGR:
case JCS_EXT_BGRX:
case JCS_EXT_XBGR:
case JCS_EXT_XRGB:
case JCS_EXT_RGBA:
case JCS_EXT_BGRA:
case JCS_EXT_ABGR:
case JCS_EXT_ARGB:
cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space];
break;
case JCS_YCbCr:
case JCS_RGB565:
cinfo->out_color_components = 3;
break;
case JCS_CMYK:
case JCS_YCCK:
cinfo->out_color_components = 4;
break;
default: /* else must be same colorspace as in file */
cinfo->out_color_components = cinfo->num_components;
break;
}
cinfo->output_components = (cinfo->quantize_colors ? 1 :
cinfo->out_color_components);
/* See if upsampler will want to emit more than one row at a time */
if (use_merged_upsample(cinfo))
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
else
cinfo->rec_outbuf_height = 1;
}
/*
* Several decompression processes need to range-limit values to the range
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
* due to noise introduced by quantization, roundoff error, etc. These
* processes are inner loops and need to be as fast as possible. On most
* machines, particularly CPUs with pipelines or instruction prefetch,
* a (subscript-check-less) C table lookup
* x = sample_range_limit[x];
* is faster than explicit tests
* if (x < 0) x = 0;
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
* These processes all use a common table prepared by the routine below.
*
* For most steps we can mathematically guarantee that the initial value
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
* limiting step (just after the IDCT), a wildly out-of-range value is
* possible if the input data is corrupt. To avoid any chance of indexing
* off the end of memory and getting a bad-pointer trap, we perform the
* post-IDCT limiting thus:
* x = range_limit[x & MASK];
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
* samples. Under normal circumstances this is more than enough range and
* a correct output will be generated; with bogus input data the mask will
* cause wraparound, and we will safely generate a bogus-but-in-range output.
* For the post-IDCT step, we want to convert the data from signed to unsigned
* representation by adding CENTERJSAMPLE at the same time that we limit it.
* So the post-IDCT limiting table ends up looking like this:
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
* 0,1,...,CENTERJSAMPLE-1
* Negative inputs select values from the upper half of the table after
* masking.
*
* We can save some space by overlapping the start of the post-IDCT table
* with the simpler range limiting table. The post-IDCT table begins at
* sample_range_limit + CENTERJSAMPLE.
*/
LOCAL(void)
prepare_range_limit_table(j_decompress_ptr cinfo)
/* Allocate and fill in the sample_range_limit table */
{
JSAMPLE *table;
J12SAMPLE *table12;
#ifdef D_LOSSLESS_SUPPORTED
J16SAMPLE *table16;
#endif
int i;
if (cinfo->data_precision == 16) {
#ifdef D_LOSSLESS_SUPPORTED
table16 = (J16SAMPLE *)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
(5 * (MAXJ16SAMPLE + 1) + CENTERJ16SAMPLE) *
sizeof(J16SAMPLE));
table16 += (MAXJ16SAMPLE + 1); /* allow negative subscripts of simple
table */
cinfo->sample_range_limit = (JSAMPLE *)table16;
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
memset(table16 - (MAXJ16SAMPLE + 1), 0,
(MAXJ16SAMPLE + 1) * sizeof(J16SAMPLE));
/* Main part of "simple" table: limit[x] = x */
for (i = 0; i <= MAXJ16SAMPLE; i++)
table16[i] = (J16SAMPLE)i;
table16 += CENTERJ16SAMPLE; /* Point to where post-IDCT table starts */
/* End of simple table, rest of first half of post-IDCT table */
for (i = CENTERJ16SAMPLE; i < 2 * (MAXJ16SAMPLE + 1); i++)
table16[i] = MAXJ16SAMPLE;
/* Second half of post-IDCT table */
memset(table16 + (2 * (MAXJ16SAMPLE + 1)), 0,
(2 * (MAXJ16SAMPLE + 1) - CENTERJ16SAMPLE) * sizeof(J16SAMPLE));
memcpy(table16 + (4 * (MAXJ16SAMPLE + 1) - CENTERJ16SAMPLE),
cinfo->sample_range_limit, CENTERJ16SAMPLE * sizeof(J16SAMPLE));
#else
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
#endif
} else if (cinfo->data_precision == 12) {
table12 = (J12SAMPLE *)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
(5 * (MAXJ12SAMPLE + 1) + CENTERJ12SAMPLE) *
sizeof(J12SAMPLE));
table12 += (MAXJ12SAMPLE + 1); /* allow negative subscripts of simple
table */
cinfo->sample_range_limit = (JSAMPLE *)table12;
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
memset(table12 - (MAXJ12SAMPLE + 1), 0,
(MAXJ12SAMPLE + 1) * sizeof(J12SAMPLE));
/* Main part of "simple" table: limit[x] = x */
for (i = 0; i <= MAXJ12SAMPLE; i++)
table12[i] = (J12SAMPLE)i;
table12 += CENTERJ12SAMPLE; /* Point to where post-IDCT table starts */
/* End of simple table, rest of first half of post-IDCT table */
for (i = CENTERJ12SAMPLE; i < 2 * (MAXJ12SAMPLE + 1); i++)
table12[i] = MAXJ12SAMPLE;
/* Second half of post-IDCT table */
memset(table12 + (2 * (MAXJ12SAMPLE + 1)), 0,
(2 * (MAXJ12SAMPLE + 1) - CENTERJ12SAMPLE) * sizeof(J12SAMPLE));
memcpy(table12 + (4 * (MAXJ12SAMPLE + 1) - CENTERJ12SAMPLE),
cinfo->sample_range_limit, CENTERJ12SAMPLE * sizeof(J12SAMPLE));
} else {
table = (JSAMPLE *)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
(5 * (MAXJSAMPLE + 1) + CENTERJSAMPLE) * sizeof(JSAMPLE));
table += (MAXJSAMPLE + 1); /* allow negative subscripts of simple table */
cinfo->sample_range_limit = table;
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
memset(table - (MAXJSAMPLE + 1), 0, (MAXJSAMPLE + 1) * sizeof(JSAMPLE));
/* Main part of "simple" table: limit[x] = x */
for (i = 0; i <= MAXJSAMPLE; i++)
table[i] = (JSAMPLE)i;
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
/* End of simple table, rest of first half of post-IDCT table */
for (i = CENTERJSAMPLE; i < 2 * (MAXJSAMPLE + 1); i++)
table[i] = MAXJSAMPLE;
/* Second half of post-IDCT table */
memset(table + (2 * (MAXJSAMPLE + 1)), 0,
(2 * (MAXJSAMPLE + 1) - CENTERJSAMPLE) * sizeof(JSAMPLE));
memcpy(table + (4 * (MAXJSAMPLE + 1) - CENTERJSAMPLE),
cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE));
}
}
/*
* Master selection of decompression modules.
* This is done once at jpeg_start_decompress time. We determine
* which modules will be used and give them appropriate initialization calls.
* We also initialize the decompressor input side to begin consuming data.
*
* Since jpeg_read_header has finished, we know what is in the SOF
* and (first) SOS markers. We also have all the application parameter
* settings.
*/
LOCAL(void)
master_selection(j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr)cinfo->master;
boolean use_c_buffer;
long samplesperrow;
JDIMENSION jd_samplesperrow;
/* Disable IDCT scaling and raw (downsampled) data output in lossless mode.
* IDCT scaling is not useful in lossless mode, and it must be disabled in
* order to properly calculate the output dimensions. Raw data output isn't
* particularly useful without subsampling and has not been tested in
* lossless mode.
*/
if (cinfo->master->lossless) {
cinfo->raw_data_out = FALSE;
cinfo->scale_num = cinfo->scale_denom = 1;
}
/* Initialize dimensions and other stuff */
jpeg_calc_output_dimensions(cinfo);
prepare_range_limit_table(cinfo);
/* Width of an output scanline must be representable as JDIMENSION. */
samplesperrow = (long)cinfo->output_width *
(long)cinfo->out_color_components;
jd_samplesperrow = (JDIMENSION)samplesperrow;
if ((long)jd_samplesperrow != samplesperrow)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
/* Initialize my private state */
master->pass_number = 0;
master->using_merged_upsample = use_merged_upsample(cinfo);
/* Color quantizer selection */
master->quantizer_1pass = NULL;
master->quantizer_2pass = NULL;
/* No mode changes if not using buffered-image mode. */
if (!cinfo->quantize_colors || !cinfo->buffered_image) {
cinfo->enable_1pass_quant = FALSE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
}
if (cinfo->quantize_colors) {
if (cinfo->raw_data_out)
ERREXIT(cinfo, JERR_NOTIMPL);
/* 2-pass quantizer only works in 3-component color space. */
if (cinfo->out_color_components != 3) {
cinfo->enable_1pass_quant = TRUE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
cinfo->colormap = NULL;
} else if (cinfo->colormap != NULL) {
cinfo->enable_external_quant = TRUE;
} else if (cinfo->two_pass_quantize) {
cinfo->enable_2pass_quant = TRUE;
} else {
cinfo->enable_1pass_quant = TRUE;
}
if (cinfo->enable_1pass_quant) {
#ifdef QUANT_1PASS_SUPPORTED
if (cinfo->data_precision == 16)
#ifdef D_LOSSLESS_SUPPORTED
j16init_1pass_quantizer(cinfo);
#else
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
#endif
else if (cinfo->data_precision == 12)
j12init_1pass_quantizer(cinfo);
else
jinit_1pass_quantizer(cinfo);
master->quantizer_1pass = cinfo->cquantize;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
}
/* We use the 2-pass code to map to external colormaps. */
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
#ifdef QUANT_2PASS_SUPPORTED
if (cinfo->data_precision == 16)
#ifdef D_LOSSLESS_SUPPORTED
j16init_2pass_quantizer(cinfo);
#else
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
#endif
else if (cinfo->data_precision == 12)
j12init_2pass_quantizer(cinfo);
else
jinit_2pass_quantizer(cinfo);
master->quantizer_2pass = cinfo->cquantize;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
}
/* If both quantizers are initialized, the 2-pass one is left active;
* this is necessary for starting with quantization to an external map.
*/
}
/* Post-processing: in particular, color conversion first */
if (!cinfo->raw_data_out) {
if (master->using_merged_upsample) {
#ifdef UPSAMPLE_MERGING_SUPPORTED
if (cinfo->data_precision == 16)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
else if (cinfo->data_precision == 12)
j12init_merged_upsampler(cinfo); /* does color conversion too */
else
jinit_merged_upsampler(cinfo); /* does color conversion too */
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
if (cinfo->data_precision == 16) {
#ifdef D_LOSSLESS_SUPPORTED
j16init_color_deconverter(cinfo);
j16init_upsampler(cinfo);
#else
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
#endif
} else if (cinfo->data_precision == 12) {
j12init_color_deconverter(cinfo);
j12init_upsampler(cinfo);
} else {
jinit_color_deconverter(cinfo);
jinit_upsampler(cinfo);
}
}
if (cinfo->data_precision == 16)
#ifdef D_LOSSLESS_SUPPORTED
j16init_d_post_controller(cinfo, cinfo->enable_2pass_quant);
#else
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
#endif
else if (cinfo->data_precision == 12)
j12init_d_post_controller(cinfo, cinfo->enable_2pass_quant);
else
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
}
if (cinfo->master->lossless) {
#ifdef D_LOSSLESS_SUPPORTED
/* Prediction, sample undifferencing, point transform, and sample size
* scaling
*/
if (cinfo->data_precision == 16)
j16init_lossless_decompressor(cinfo);
else if (cinfo->data_precision == 12)
j12init_lossless_decompressor(cinfo);
else
jinit_lossless_decompressor(cinfo);
/* Entropy decoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
jinit_lhuff_decoder(cinfo);
}
/* Initialize principal buffer controllers. */
use_c_buffer = cinfo->inputctl->has_multiple_scans ||
cinfo->buffered_image;
if (cinfo->data_precision == 16)
j16init_d_diff_controller(cinfo, use_c_buffer);
else if (cinfo->data_precision == 12)
j12init_d_diff_controller(cinfo, use_c_buffer);
else
jinit_d_diff_controller(cinfo, use_c_buffer);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
if (cinfo->data_precision == 16)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Inverse DCT */
if (cinfo->data_precision == 12)
j12init_inverse_dct(cinfo);
else
jinit_inverse_dct(cinfo);
/* Entropy decoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
#ifdef D_ARITH_CODING_SUPPORTED
jinit_arith_decoder(cinfo);
#else
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
#endif
} else {
if (cinfo->progressive_mode) {
#ifdef D_PROGRESSIVE_SUPPORTED
jinit_phuff_decoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_decoder(cinfo);
}
/* Initialize principal buffer controllers. */
use_c_buffer = cinfo->inputctl->has_multiple_scans ||
cinfo->buffered_image;
if (cinfo->data_precision == 12)
j12init_d_coef_controller(cinfo, use_c_buffer);
else
jinit_d_coef_controller(cinfo, use_c_buffer);
}
if (!cinfo->raw_data_out) {
if (cinfo->data_precision == 16)
#ifdef D_LOSSLESS_SUPPORTED
j16init_d_main_controller(cinfo,
FALSE /* never need full buffer here */);
#else
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
#endif
else if (cinfo->data_precision == 12)
j12init_d_main_controller(cinfo,
FALSE /* never need full buffer here */);
else
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
}
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo);
/* Initialize input side of decompressor to consume first scan. */
(*cinfo->inputctl->start_input_pass) (cinfo);
/* Set the first and last iMCU columns to decompress from single-scan images.
* By default, decompress all of the iMCU columns.
*/
cinfo->master->first_iMCU_col = 0;
cinfo->master->last_iMCU_col = cinfo->MCUs_per_row - 1;
cinfo->master->last_good_iMCU_row = 0;
#ifdef D_MULTISCAN_FILES_SUPPORTED
/* If jpeg_start_decompress will read the whole file, initialize
* progress monitoring appropriately. The input step is counted
* as one pass.
*/
if (cinfo->progress != NULL && !cinfo->buffered_image &&
cinfo->inputctl->has_multiple_scans) {
int nscans;
/* Estimate number of scans to set pass_limit. */
if (cinfo->progressive_mode) {
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
nscans = 2 + 3 * cinfo->num_components;
} else {
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
nscans = cinfo->num_components;
}
cinfo->progress->pass_counter = 0L;
cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows * nscans;
cinfo->progress->completed_passes = 0;
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
/* Count the input pass as done */
master->pass_number++;
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */
}
/*
* Per-pass setup.
* This is called at the beginning of each output pass. We determine which
* modules will be active during this pass and give them appropriate
* start_pass calls. We also set is_dummy_pass to indicate whether this
* is a "real" output pass or a dummy pass for color quantization.
* (In the latter case, jdapistd.c will crank the pass to completion.)
*/
METHODDEF(void)
prepare_for_output_pass(j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr)cinfo->master;
if (master->pub.is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
/* Final pass of 2-pass quantization */
master->pub.is_dummy_pass = FALSE;
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
} else {
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
/* Select new quantization method */
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
cinfo->cquantize = master->quantizer_2pass;
master->pub.is_dummy_pass = TRUE;
} else if (cinfo->enable_1pass_quant) {
cinfo->cquantize = master->quantizer_1pass;
} else {
ERREXIT(cinfo, JERR_MODE_CHANGE);
}
}
(*cinfo->idct->start_pass) (cinfo);
(*cinfo->coef->start_output_pass) (cinfo);
if (!cinfo->raw_data_out) {
if (!master->using_merged_upsample)
(*cinfo->cconvert->start_pass) (cinfo);
(*cinfo->upsample->start_pass) (cinfo);
if (cinfo->quantize_colors)
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
(*cinfo->post->start_pass) (cinfo,
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
}
}
/* Set up progress monitor's pass info if present */
if (cinfo->progress != NULL) {
cinfo->progress->completed_passes = master->pass_number;
cinfo->progress->total_passes = master->pass_number +
(master->pub.is_dummy_pass ? 2 : 1);
/* In buffered-image mode, we assume one more output pass if EOI not
* yet reached, but no more passes if EOI has been reached.
*/
if (cinfo->buffered_image && !cinfo->inputctl->eoi_reached) {
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
}
}
}
/*
* Finish up at end of an output pass.
*/
METHODDEF(void)
finish_output_pass(j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr)cinfo->master;
if (cinfo->quantize_colors)
(*cinfo->cquantize->finish_pass) (cinfo);
master->pass_number++;
}
#ifdef D_MULTISCAN_FILES_SUPPORTED
/*
* Switch to a new external colormap between output passes.
*/
GLOBAL(void)
jpeg_new_colormap(j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr)cinfo->master;
/* Prevent application from calling me at wrong times */
if (cinfo->global_state != DSTATE_BUFIMAGE)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
cinfo->colormap != NULL) {
/* Select 2-pass quantizer for external colormap use */
cinfo->cquantize = master->quantizer_2pass;
/* Notify quantizer of colormap change */
(*cinfo->cquantize->new_color_map) (cinfo);
master->pub.is_dummy_pass = FALSE; /* just in case */
} else
ERREXIT(cinfo, JERR_MODE_CHANGE);
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */
/*
* Initialize master decompression control and select active modules.
* This is performed at the start of jpeg_start_decompress.
*/
GLOBAL(void)
jinit_master_decompress(j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr)cinfo->master;
master->pub.prepare_for_output_pass = prepare_for_output_pass;
master->pub.finish_output_pass = finish_output_pass;
master->pub.is_dummy_pass = FALSE;
master->pub.jinit_upsampler_no_alloc = FALSE;
master_selection(cinfo);
}