-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimized.py
163 lines (138 loc) · 6.16 KB
/
optimized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import tensorflow as tf, pandas as pd, numpy as np, math, random
from tensorflow.contrib import rnn
team_dict = {'ARI': 'Arizona Cardinals', 'ATL': 'Atlanta Falcons', 'BAL': 'Baltimore Ravens', 'BUF': 'Buffalo Bills', 'CAR': 'Carolina Panthers', 'CHI': 'Chicago Bears', 'CIN': 'Cincinnati Bengals', 'CLE': 'Cleveland Browns', 'DAL': 'Dallas Cowboys', 'DEN': 'Denver Broncos', 'DET': 'Detroit Lions', 'GNB': 'Green Bay Packers', 'HOU': 'Houston Texans', 'IND': 'Indianapolis Colts', 'JAX': 'Jacksonville Jaguars', 'KAN': 'Kansas City Chiefs', 'LAR': 'Los Angeles Rams', 'MIA': 'Miami Dolphins', 'MIN': 'Minnesota Vikings', 'NOR': 'New Orleans Saints', 'NWE': 'New England Patriots', 'NYG': 'New York Giants', 'NYJ': 'New York Jets', 'OAK': 'Oakland Raiders', 'PHI': 'Philadelphia Eagles', 'PIT': 'Pittsburgh Steelers', 'SDG': 'San Diego Chargers', 'SEA': 'Seattle Seahawks', 'SFO': 'San Francisco 49ers', 'STL': 'St. Louis Rams', 'TAM': 'Tampa Bay Buccaneers', 'TEN': 'Tennessee Titans', 'WAS': 'Washington Redskins'}
pos_dict = {'QB': 2, 'RB': 4, 'WR': 3, 'TE': 1}
def rosterize(year1, year2):
y1 = pd.read_csv('Data/' + str(year1) + '.csv')
y2 = pd.read_csv('Data/' + str(year2) + '.csv')
roster_data = dict()
ranks = []
y1codes = [i.split('\\')[1] for i in y1['Name']]
y2codes = [i.split('\\')[1] for i in y2['Name']]
table = y1[['Tm', 'FantPos', 'Age', 'G', 'GS', 'Cmp', 'Att', 'Yds', 'TD', 'Int', 'Att', 'Yds', 'Y/A', 'TD', 'Tgt', 'Rec', 'Yds', 'Y/R', 'TD', 'FantPt', 'DKPt', 'FDPt', 'PosRank']]
ctr = 0
for i in y1codes:
if i in y2codes:
a = list(table.ix[ctr]) + [0]
for b in range(len(a)):
if type(a[b]) == float and math.isnan(a[b]):
a[b] = 0.0
roster_data[i] = a
val = y2['FantPt'][y2codes.index(i)]
if math.isnan(val):
val = 0.0
ranks.append((i, val))
ctr += 1
raw_ranks = [i for i in sorted(ranks, key=lambda x: x[1], reverse=True)][:425]
divisor = sum([x[1] for x in raw_ranks])
return roster_data, [(j[0], j[1]/divisor) for j in raw_ranks], divisor
def rank(year):
nfc = pd.read_csv('Data/NFC' + str(year) + '.csv')
afc = pd.read_csv('Data/AFC' + str(year) + '.csv')
ranks = []
i = 0
j = 0
while i < len(nfc['Tm']) or j < len(afc['Tm']):
if i == len(nfc['Tm']):
ranks.append(afc['Tm'][j])
j += 1
elif j == len(afc['Tm']):
ranks.append(nfc['Tm'][i])
i += 1
elif afc['W-L%'][j] > nfc['W-L%'][i]:
ranks.append(afc['Tm'][j])
j += 1
elif afc['W-L%'][j] == nfc['W-L%'][i]:
if afc['SRS'][j] > nfc['SRS'][i]:
ranks.append(afc['Tm'][j])
j += 1
else:
ranks.append(nfc['Tm'][i])
i += 1
else:
ranks.append(nfc['Tm'][i])
i += 1
return ranks
sess = tf.InteractiveSession()
roster_data = []
rankings = []
totals = []
for year in range(2012, 2016):
roster_datum, ranking, total = rosterize(year, year + 1)
team_rankings = rank(year)
for i in roster_datum:
if roster_datum[i][0] in team_dict:
roster_datum[i][0] = team_rankings.index(team_dict[roster_datum[i][0]])
else:
roster_datum[i][0] = 0
if roster_datum[i][1] in pos_dict:
roster_datum[i][1] = pos_dict[roster_datum[i][1]]
else:
roster_datum[i][1] = 0
roster_data.append(roster_datum)
rankings.append(ranking)
totals.append(total)
x = tf.placeholder(tf.float32, shape=[None, 24])
y_ = tf.placeholder(tf.float32, shape=[None, 1])
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def RNN(rec, weights, biases):
rec = tf.unstack(rec, 12, 1)
lstm_cell = rnn.BasicLSTMCell(69, forget_bias=1.0)
outputs, states = rnn.static_rnn(lstm_cell, rec, dtype=tf.float32)
return tf.matmul(outputs[-1], weights) + biases
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='VALID')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='VALID')
W_conv = weight_variable([2, 2, 1, 4])
b_conv = bias_variable([4])
x_image = tf.reshape(x, [-1,4,6,1])
h1 = tf.nn.relu(conv2d(x_image, W_conv) + b_conv)
h_pool = max_pool_2x2(h1)
h_pool_flat = tf.reshape(h_pool, [-1, 8])
W_feed = weight_variable([8, 24])
b_feed = bias_variable([24])
conv_feed = tf.matmul(tf.tanh(h_pool_flat),W_feed) + b_feed
W_input = weight_variable([24, 69])
b_input = bias_variable([69])
h1 = tf.tanh(tf.matmul(conv_feed,W_input) + b_input)
W_i = [W_input]
b_i = [b_input]
h_i = [h1]
for i in range(15):
W_i.append(weight_variable([69, 69]))
b_i.append(bias_variable([69]))
h_i.append(tf.matmul(tf.tanh(h_i[-1]),W_i[-1]) + b_i[-1])
W_recombine = weight_variable([69, 24])
b_recombine = bias_variable([24])
W_out = weight_variable([69, 24])
b_out = bias_variable([24])
rec = tf.reshape(tf.matmul(tf.tanh(h_i[-1]), W_recombine) + b_recombine, [-1, 12, 2])
y = RNN(rec, W_out, b_out)
cost = tf.reduce_mean(tf.reduce_sum(tf.square(y - y_)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cost)
sess.run(tf.global_variables_initializer())
def is_list(x, y):
j = 0
for i in y:
if x == y:
return j
j += 1
return 0
accuracyl = []
for b in range(100):
for i in range(len(rankings) - 1):
random.shuffle(rankings[i])
batches = [rankings[i][25 * j: 25 * (j + 1)] for j in range(17)]
for l in batches:
train_step.run(feed_dict={x: np.array([roster_data[i][j[0]] for j in l]), y_: np.array([[j[1]] for j in l])})
accuracy = tf.reduce_mean(tf.cast(abs(y - y_) * np.mean(totals) < 30, tf.float32))
accuracyl.append(accuracy.eval(feed_dict={x: np.array([roster_data[-1][i[0]] for i in rankings[-1]]), y_: np.array([[i[1]] for i in rankings[-1]])}))
print "Epoch:", b, "Accuracy:", accuracyl[-1]
print "Max Accuracy:", max(accuracyl), "Epoch:", accuracyl.index(max(accuracyl))