You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I've been running into this issue:IndexError: too many indices for tensor of dimension 0
My code is as follows:
(SE3nv) C:\Users\pc\RFdiffusion>python scripts/run_inference.py inference.output_prefix=outputs/Nav1.7_binder contigmap.contigs='1-100000' inference.input_pdb=C:\Users\pc\Downloads\RFdiffusion\vsdii_domain.pdb inference.num_designs=10
[2025-03-13 18:45:33,906][main][INFO] - Found GPU with device_name NVIDIA GeForce RTX 4060 Ti. Will run RFdiffusion on NVIDIA GeForce RTX 4060 Ti
Reading models from C:\Users\pc\miniconda3\envs\SE3nv\Lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference/../../models
[2025-03-13 18:45:33,907][rfdiffusion.inference.model_runners][INFO] - Reading checkpoint from C:\Users\pc\miniconda3\envs\SE3nv\Lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference/../../models/Base_ckpt.pt
This is inf_conf.ckpt_path
C:\Users\pc\miniconda3\envs\SE3nv\Lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference/../../models/Base_ckpt.pt
Assembling -model, -diffuser and -preprocess configs from checkpoint
USING MODEL CONFIG: self._conf[model][n_extra_block] = 4
USING MODEL CONFIG: self._conf[model][n_main_block] = 32
USING MODEL CONFIG: self._conf[model][n_ref_block] = 4
USING MODEL CONFIG: self._conf[model][d_msa] = 256
USING MODEL CONFIG: self._conf[model][d_msa_full] = 64
USING MODEL CONFIG: self._conf[model][d_pair] = 128
USING MODEL CONFIG: self._conf[model][d_templ] = 64
USING MODEL CONFIG: self._conf[model][n_head_msa] = 8
USING MODEL CONFIG: self._conf[model][n_head_pair] = 4
USING MODEL CONFIG: self._conf[model][n_head_templ] = 4
USING MODEL CONFIG: self._conf[model][d_hidden] = 32
USING MODEL CONFIG: self._conf[model][d_hidden_templ] = 32
USING MODEL CONFIG: self._conf[model][p_drop] = 0.15
USING MODEL CONFIG: self._conf[model][SE3_param_full] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 8, 'l0_out_features': 8, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 32}
USING MODEL CONFIG: self._conf[model][SE3_param_topk] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 64, 'l0_out_features': 64, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 64}
USING MODEL CONFIG: self._conf[model][freeze_track_motif] = False
USING MODEL CONFIG: self._conf[model][use_motif_timestep] = True
USING MODEL CONFIG: self._conf[diffuser][T] = 50
USING MODEL CONFIG: self._conf[diffuser][b_0] = 0.01
USING MODEL CONFIG: self._conf[diffuser][b_T] = 0.07
USING MODEL CONFIG: self._conf[diffuser][schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][so3_type] = igso3
USING MODEL CONFIG: self._conf[diffuser][crd_scale] = 0.25
USING MODEL CONFIG: self._conf[diffuser][so3_schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][min_b] = 1.5
USING MODEL CONFIG: self._conf[diffuser][max_b] = 2.5
USING MODEL CONFIG: self._conf[diffuser][min_sigma] = 0.02
USING MODEL CONFIG: self._conf[diffuser][max_sigma] = 1.5
USING MODEL CONFIG: self._conf[preprocess][sidechain_input] = False
USING MODEL CONFIG: self._conf[preprocess][motif_sidechain_input] = True
USING MODEL CONFIG: self._conf[preprocess][d_t1d] = 22
USING MODEL CONFIG: self._conf[preprocess][d_t2d] = 44
USING MODEL CONFIG: self._conf[preprocess][prob_self_cond] = 0.5
USING MODEL CONFIG: self._conf[preprocess][str_self_cond] = True
USING MODEL CONFIG: self._conf[preprocess][predict_previous] = False
[2025-03-13 18:45:36,627][rfdiffusion.inference.model_runners][INFO] - Loading checkpoint.
[2025-03-13 18:45:38,598][rfdiffusion.diffusion][INFO] - Using cached IGSO3.
Successful diffuser init
[2025-03-13 18:45:38,606][main][INFO] - Making design outputs/Nav1.7_binder_0
[2025-03-13 18:45:38,609][rfdiffusion.inference.model_runners][INFO] - Using contig: 1-100000
Error executing job with overrides: ['inference.output_prefix=outputs/Nav1.7_binder', "contigmap.contigs='1-100000'", 'inference.input_pdb=C:\Users\pc\Downloads\RFdiffusion\vsdii_domain.pdb', 'inference.num_designs=10']
Traceback (most recent call last):
File "C:\Users\pc\RFdiffusion\scripts\run_inference.py", line 194, in
main()
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra\main.py", line 94, in decorated_main
_run_hydra(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 394, in _run_hydra
_run_app(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 457, in _run_app
run_and_report(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 223, in run_and_report
raise ex
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 220, in run_and_report
return func()
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 458, in
lambda: hydra.run(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\hydra.py", line 132, in run
_ = ret.return_value
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra\core\utils.py", line 260, in return_value
raise self._return_value
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra\core\utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "C:\Users\pc\RFdiffusion\scripts\run_inference.py", line 84, in main
x_init, seq_init = sampler.sample_init()
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference\model_runners.py", line 354, in sample_init
seq_t[contig_map.hal_idx0] = seq_orig[contig_map.ref_idx0]
IndexError: too many indices for tensor of dimension 0
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
I've been running into this issue:IndexError: too many indices for tensor of dimension 0
My code is as follows:
(SE3nv) C:\Users\pc\RFdiffusion>python scripts/run_inference.py inference.output_prefix=outputs/Nav1.7_binder contigmap.contigs='1-100000' inference.input_pdb=C:\Users\pc\Downloads\RFdiffusion\vsdii_domain.pdb inference.num_designs=10
[2025-03-13 18:45:33,906][main][INFO] - Found GPU with device_name NVIDIA GeForce RTX 4060 Ti. Will run RFdiffusion on NVIDIA GeForce RTX 4060 Ti
Reading models from C:\Users\pc\miniconda3\envs\SE3nv\Lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference/../../models
[2025-03-13 18:45:33,907][rfdiffusion.inference.model_runners][INFO] - Reading checkpoint from C:\Users\pc\miniconda3\envs\SE3nv\Lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference/../../models/Base_ckpt.pt
This is inf_conf.ckpt_path
C:\Users\pc\miniconda3\envs\SE3nv\Lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference/../../models/Base_ckpt.pt
Assembling -model, -diffuser and -preprocess configs from checkpoint
USING MODEL CONFIG: self._conf[model][n_extra_block] = 4
USING MODEL CONFIG: self._conf[model][n_main_block] = 32
USING MODEL CONFIG: self._conf[model][n_ref_block] = 4
USING MODEL CONFIG: self._conf[model][d_msa] = 256
USING MODEL CONFIG: self._conf[model][d_msa_full] = 64
USING MODEL CONFIG: self._conf[model][d_pair] = 128
USING MODEL CONFIG: self._conf[model][d_templ] = 64
USING MODEL CONFIG: self._conf[model][n_head_msa] = 8
USING MODEL CONFIG: self._conf[model][n_head_pair] = 4
USING MODEL CONFIG: self._conf[model][n_head_templ] = 4
USING MODEL CONFIG: self._conf[model][d_hidden] = 32
USING MODEL CONFIG: self._conf[model][d_hidden_templ] = 32
USING MODEL CONFIG: self._conf[model][p_drop] = 0.15
USING MODEL CONFIG: self._conf[model][SE3_param_full] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 8, 'l0_out_features': 8, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 32}
USING MODEL CONFIG: self._conf[model][SE3_param_topk] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 64, 'l0_out_features': 64, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 64}
USING MODEL CONFIG: self._conf[model][freeze_track_motif] = False
USING MODEL CONFIG: self._conf[model][use_motif_timestep] = True
USING MODEL CONFIG: self._conf[diffuser][T] = 50
USING MODEL CONFIG: self._conf[diffuser][b_0] = 0.01
USING MODEL CONFIG: self._conf[diffuser][b_T] = 0.07
USING MODEL CONFIG: self._conf[diffuser][schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][so3_type] = igso3
USING MODEL CONFIG: self._conf[diffuser][crd_scale] = 0.25
USING MODEL CONFIG: self._conf[diffuser][so3_schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][min_b] = 1.5
USING MODEL CONFIG: self._conf[diffuser][max_b] = 2.5
USING MODEL CONFIG: self._conf[diffuser][min_sigma] = 0.02
USING MODEL CONFIG: self._conf[diffuser][max_sigma] = 1.5
USING MODEL CONFIG: self._conf[preprocess][sidechain_input] = False
USING MODEL CONFIG: self._conf[preprocess][motif_sidechain_input] = True
USING MODEL CONFIG: self._conf[preprocess][d_t1d] = 22
USING MODEL CONFIG: self._conf[preprocess][d_t2d] = 44
USING MODEL CONFIG: self._conf[preprocess][prob_self_cond] = 0.5
USING MODEL CONFIG: self._conf[preprocess][str_self_cond] = True
USING MODEL CONFIG: self._conf[preprocess][predict_previous] = False
[2025-03-13 18:45:36,627][rfdiffusion.inference.model_runners][INFO] - Loading checkpoint.
[2025-03-13 18:45:38,598][rfdiffusion.diffusion][INFO] - Using cached IGSO3.
Successful diffuser init
[2025-03-13 18:45:38,606][main][INFO] - Making design outputs/Nav1.7_binder_0
[2025-03-13 18:45:38,609][rfdiffusion.inference.model_runners][INFO] - Using contig: 1-100000
Error executing job with overrides: ['inference.output_prefix=outputs/Nav1.7_binder', "contigmap.contigs='1-100000'", 'inference.input_pdb=C:\Users\pc\Downloads\RFdiffusion\vsdii_domain.pdb', 'inference.num_designs=10']
Traceback (most recent call last):
File "C:\Users\pc\RFdiffusion\scripts\run_inference.py", line 194, in
main()
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra\main.py", line 94, in decorated_main
_run_hydra(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 394, in _run_hydra
_run_app(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 457, in _run_app
run_and_report(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 223, in run_and_report
raise ex
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 220, in run_and_report
return func()
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\utils.py", line 458, in
lambda: hydra.run(
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra_internal\hydra.py", line 132, in run
_ = ret.return_value
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra\core\utils.py", line 260, in return_value
raise self._return_value
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\hydra\core\utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "C:\Users\pc\RFdiffusion\scripts\run_inference.py", line 84, in main
x_init, seq_init = sampler.sample_init()
File "C:\Users\pc\miniconda3\envs\SE3nv\lib\site-packages\rfdiffusion-1.1.0-py3.9.egg\rfdiffusion\inference\model_runners.py", line 354, in sample_init
seq_t[contig_map.hal_idx0] = seq_orig[contig_map.ref_idx0]
IndexError: too many indices for tensor of dimension 0
Beta Was this translation helpful? Give feedback.
All reactions