-
Notifications
You must be signed in to change notification settings - Fork 0
/
fluid_solid.py
174 lines (154 loc) · 5.26 KB
/
fluid_solid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# MPM-MLS in 88 lines of Taichi code, originally created by @yuanming-hu
import taichi as ti
ti.init(arch=ti.gpu)
n_particles = 8192
n2_particles = 1024
n_grid = 128
dx = 1 / n_grid
dt = 2e-4
p_rho = 1
p_vol = (dx * 0.5)**2
p_mass = p_vol * p_rho
gravity = 9.8
bound = 3
E = 400
side = 0.1
ratio_t = ti.field(float, ())
x = ti.Vector.field(2, float, n_particles)
v = ti.Vector.field(2, float, n_particles)
C = ti.Matrix.field(2, 2, float, n_particles)
J = ti.field(float, n_particles)
x2 = ti.Vector.field(2, float, n2_particles)
v2 = ti.Vector.field(2, float, ())
x2c = ti.Vector.field(2, float, ())
grid_v = ti.Vector.field(2, float, (n_grid, n_grid))
grid_m = ti.field(float, (n_grid, n_grid))
@ti.kernel
def substep():
# 1. water P2G
for i, j in grid_m:
grid_v[i, j] = [0, 0]
grid_m[i, j] = 0
for p in x:
Xp = x[p] / dx
base = int(Xp - 0.5)
fx = Xp - base
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
stress = -dt * 4 * E * p_vol * (J[p] - 1) / dx**2
affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p]
for i, j in ti.static(ti.ndrange(3, 3)):
offset = ti.Vector([i, j])
dpos = (offset - fx) * dx
weight = w[i].x * w[j].y
grid_v[base + offset] += weight * (p_mass * v[p] + affine @ dpos)
grid_m[base + offset] += weight * p_mass
for p in x2:
Xp = x2[p] / dx
base = int(Xp - 0.5)
fx = Xp - base
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
stress = -dt * 4 * E * p_vol * (J[p] - 1) / dx**2
affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p]
for i, j in ti.static(ti.ndrange(3, 3)):
offset = ti.Vector([i, j])
dpos = (offset - fx) * dx
weight = w[i].x * w[j].y
grid_v[base + offset] += weight * (p_mass * v2[None] + affine @ dpos)
grid_m[base + offset] += weight * p_mass
for i, j in grid_m:
if grid_m[i, j] > 0:
grid_v[i, j] /= grid_m[i, j]
grid_v[i, j].y -= dt * gravity
if i < bound and grid_v[i, j].x < 0:
grid_v[i, j].x = 0
if i > n_grid - bound and grid_v[i, j].x > 0:
grid_v[i, j].x = 0
if j < bound and grid_v[i, j].y < 0:
grid_v[i, j].y = 0
if j > n_grid - bound and grid_v[i, j].y > 0:
grid_v[i, j].y = 0
#2. square G2P
dis_mass = 0.0
v2_fld = ti.Vector.zero(float, 2)
for p in x2:
Xp = x2[p] / dx
base = int(Xp - 0.5)
fx = Xp - base
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
new_v = ti.Vector.zero(float, 2)
new_m = 0.0
for i, j in ti.static(ti.ndrange(3, 3)):
offset = ti.Vector([i, j])
dpos = (offset - fx) * dx
weight = w[i].x * w[j].y
g_v = grid_v[base + offset]
g_m = grid_m[base + offset]
new_v += weight * g_v
new_m += weight * g_m
dis_mass += new_m
v2_fld += new_v
v2_fld /= n2_particles
v2_self = v2[None]
# v2_self.y -= dt * gravity
inertia = n2_particles*0.8
ratio_free = dis_mass/p_mass/inertia
ratio = min(ratio_free, 1)
ratio = 0.5
ratio_t[None] = min(ratio_t[None]+0.0001,1.0)
ratio = ratio_t[None]
v2[None] = v2_self*(1.0-ratio) + v2_fld*ratio
# floating = -50
# v2.y += ratio * ratio_free * dt * floating
if (x2c[None].x)*n_grid < bound and v2[None].x < 0:
v2[None].x *= -1.0
if (x2c[None].x)*n_grid > n_grid - bound and v2[None].x > 0:
v2[None].x *= -1.0
if (x2c[None].y)*n_grid < bound and v2[None].y < 0:
v2[None].y *= -1.0
if (x2c[None].y)*n_grid > n_grid - bound and v2[None].y > 0:
v2[None].y *= -1.0
x2c[None] += dt * v2[None]
for p in x2:
x2[p] += dt * v2[None]
#water G2P
for p in x:
Xp = x[p] / dx
base = int(Xp - 0.5)
fx = Xp - base
w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
new_v = ti.Vector.zero(float, 2)
new_C = ti.Matrix.zero(float, 2, 2)
for i, j in ti.static(ti.ndrange(3, 3)):
offset = ti.Vector([i, j])
dpos = (offset - fx) * dx
weight = w[i].x * w[j].y
g_v = grid_v[base + offset]
new_v += weight * g_v
new_C += 4 * weight * g_v.outer_product(dpos) / dx**2
v[p] = new_v
x[p] += dt * v[p]
J[p] *= 1.0 + dt * new_C.trace()
C[p] = new_C
@ti.kernel
def init():
for i in range(n_particles):
x[i] = [ti.random() * 0.4 + 0.2, ti.random() * 0.4 + 0.2]
v[i] = [0, -1]
J[i] = 1
x2c[None] = [0.5, 0.8]
for i in range(n2_particles):
x2[i] = [ti.random() * side, ti.random() * side]+ x2c[None]
v2[None] = [0.0, -1.0]
ratio_t[None] = 0.0
init()
gui = ti.GUI('MPM88')
while gui.running:
if gui.get_event(ti.GUI.PRESS):
if gui.event.key == 'r': init()
elif gui.event.key in [ti.GUI.ESCAPE, ti.GUI.EXIT]: break
for s in range(50):
substep()
gui.clear(0x112F41)
gui.circles(x.to_numpy(), radius=1.5, color=0x068587)
gui.circles(x2.to_numpy(), radius=1.5, color=0xED553B)
gui.show()