-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocument-term-matrix.html
394 lines (350 loc) · 25.1 KB
/
document-term-matrix.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>Chapter 10 Document-term matrix | Natural Language Processing with R</title>
<meta name="description" content="This is a tutorial of various techniques used in natural language processing and text mining." />
<meta name="generator" content="bookdown 0.18 and GitBook 2.6.7" />
<meta property="og:title" content="Chapter 10 Document-term matrix | Natural Language Processing with R" />
<meta property="og:type" content="book" />
<meta property="og:description" content="This is a tutorial of various techniques used in natural language processing and text mining." />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Chapter 10 Document-term matrix | Natural Language Processing with R" />
<meta name="twitter:description" content="This is a tutorial of various techniques used in natural language processing and text mining." />
<meta name="author" content="Saif SHabou" />
<meta name="date" content="2020-05-06" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="words-relationships-analysis.html"/>
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(title);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./">NLP with R</a></li>
<li class="divider"></li>
<li class="chapter" data-level="1" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i><b>1</b> Introduction</a></li>
<li class="chapter" data-level="2" data-path="text-processing.html"><a href="text-processing.html"><i class="fa fa-check"></i><b>2</b> Text processing</a><ul>
<li class="chapter" data-level="2.1" data-path="text-processing.html"><a href="text-processing.html#text-data"><i class="fa fa-check"></i><b>2.1</b> Text data</a></li>
<li class="chapter" data-level="2.2" data-path="text-processing.html"><a href="text-processing.html#nlp-applications"><i class="fa fa-check"></i><b>2.2</b> NLP applications</a></li>
<li class="chapter" data-level="2.3" data-path="text-processing.html"><a href="text-processing.html#tokenization"><i class="fa fa-check"></i><b>2.3</b> Tokenization</a></li>
<li class="chapter" data-level="2.4" data-path="text-processing.html"><a href="text-processing.html#stop-words-handeling"><i class="fa fa-check"></i><b>2.4</b> Stop words handeling</a></li>
<li class="chapter" data-level="2.5" data-path="text-processing.html"><a href="text-processing.html#words-frequencies"><i class="fa fa-check"></i><b>2.5</b> Words frequencies</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="Word-embeddings.html"><a href="Word-embeddings.html"><i class="fa fa-check"></i><b>3</b> Word embeddings</a><ul>
<li class="chapter" data-level="3.1" data-path="Word-embeddings.html"><a href="Word-embeddings.html#vectorizing-text"><i class="fa fa-check"></i><b>3.1</b> Vectorizing text</a></li>
<li class="chapter" data-level="3.2" data-path="Word-embeddings.html"><a href="Word-embeddings.html#one-hot-encoding"><i class="fa fa-check"></i><b>3.2</b> One-hot encoding</a></li>
<li class="chapter" data-level="3.3" data-path="Word-embeddings.html"><a href="Word-embeddings.html#word-embeddings-methods"><i class="fa fa-check"></i><b>3.3</b> Word embeddings methods</a><ul>
<li class="chapter" data-level="3.3.1" data-path="Word-embeddings.html"><a href="Word-embeddings.html#learn-world-embeddings"><i class="fa fa-check"></i><b>3.3.1</b> Learn world embeddings</a></li>
<li class="chapter" data-level="3.3.2" data-path="Word-embeddings.html"><a href="Word-embeddings.html#pre-trained-word-embeddings"><i class="fa fa-check"></i><b>3.3.2</b> Pre-trained word embeddings</a></li>
</ul></li>
<li class="chapter" data-level="3.4" data-path="Word-embeddings.html"><a href="Word-embeddings.html#applications"><i class="fa fa-check"></i><b>3.4</b> Applications</a><ul>
<li class="chapter" data-level="3.4.1" data-path="Word-embeddings.html"><a href="Word-embeddings.html#using-skip-gram"><i class="fa fa-check"></i><b>3.4.1</b> Using Skip-Gram</a></li>
<li class="chapter" data-level="3.4.2" data-path="Word-embeddings.html"><a href="Word-embeddings.html#using-glove"><i class="fa fa-check"></i><b>3.4.2</b> Using GloVe</a></li>
</ul></li>
<li class="chapter" data-level="3.5" data-path="Word-embeddings.html"><a href="Word-embeddings.html#references"><i class="fa fa-check"></i><b>3.5</b> references</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="text-classification.html"><a href="text-classification.html"><i class="fa fa-check"></i><b>4</b> Text classification</a><ul>
<li class="chapter" data-level="4.1" data-path="text-classification.html"><a href="text-classification.html#load-the-data"><i class="fa fa-check"></i><b>4.1</b> Load the data</a></li>
<li class="chapter" data-level="4.2" data-path="text-classification.html"><a href="text-classification.html#prepare-the-data-for-neural-network"><i class="fa fa-check"></i><b>4.2</b> Prepare the data for neural network</a></li>
<li class="chapter" data-level="4.3" data-path="text-classification.html"><a href="text-classification.html#building-the-model"><i class="fa fa-check"></i><b>4.3</b> Building the model</a></li>
<li class="chapter" data-level="4.4" data-path="text-classification.html"><a href="text-classification.html#testing-the-model"><i class="fa fa-check"></i><b>4.4</b> Testing the model</a></li>
<li class="chapter" data-level="4.5" data-path="text-classification.html"><a href="text-classification.html#reference"><i class="fa fa-check"></i><b>4.5</b> Reference</a></li>
</ul></li>
<li class="chapter" data-level="5" data-path="RNN.html"><a href="RNN.html"><i class="fa fa-check"></i><b>5</b> Reccurent Neural Networks (RNN)</a><ul>
<li class="chapter" data-level="5.1" data-path="RNN.html"><a href="RNN.html#understanding-recurrent-neural-network"><i class="fa fa-check"></i><b>5.1</b> Understanding Recurrent Neural Network</a></li>
<li class="chapter" data-level="5.2" data-path="RNN.html"><a href="RNN.html#rnn-with-keras"><i class="fa fa-check"></i><b>5.2</b> RNN with Keras</a></li>
<li class="chapter" data-level="5.3" data-path="RNN.html"><a href="RNN.html#lstm-with-keras"><i class="fa fa-check"></i><b>5.3</b> LSTM with Keras</a></li>
</ul></li>
<li class="chapter" data-level="6" data-path="sentiment-analysis.html"><a href="sentiment-analysis.html"><i class="fa fa-check"></i><b>6</b> Sentiment Analysis</a><ul>
<li class="chapter" data-level="6.1" data-path="sentiment-analysis.html"><a href="sentiment-analysis.html#the-sentiments-dataset"><i class="fa fa-check"></i><b>6.1</b> The “Sentiments” dataset</a></li>
<li class="chapter" data-level="6.2" data-path="sentiment-analysis.html"><a href="sentiment-analysis.html#application"><i class="fa fa-check"></i><b>6.2</b> Application</a></li>
<li class="chapter" data-level="6.3" data-path="sentiment-analysis.html"><a href="sentiment-analysis.html#references-1"><i class="fa fa-check"></i><b>6.3</b> References:</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="word-and-document-frequency-tf-idf.html"><a href="word-and-document-frequency-tf-idf.html"><i class="fa fa-check"></i><b>7</b> Word and document frequency (TF-IDF)</a><ul>
<li class="chapter" data-level="7.1" data-path="word-and-document-frequency-tf-idf.html"><a href="word-and-document-frequency-tf-idf.html#term-frequency-application"><i class="fa fa-check"></i><b>7.1</b> Term frequency application</a></li>
<li class="chapter" data-level="7.2" data-path="word-and-document-frequency-tf-idf.html"><a href="word-and-document-frequency-tf-idf.html#zipfs-law"><i class="fa fa-check"></i><b>7.2</b> Zipf’s law</a></li>
<li class="chapter" data-level="7.3" data-path="word-and-document-frequency-tf-idf.html"><a href="word-and-document-frequency-tf-idf.html#tf_idf-metric"><i class="fa fa-check"></i><b>7.3</b> TF_IDF metric</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="topic-modeling.html"><a href="topic-modeling.html"><i class="fa fa-check"></i><b>8</b> Topic modeling</a><ul>
<li class="chapter" data-level="8.1" data-path="topic-modeling.html"><a href="topic-modeling.html#latent-dirichlet-allocation"><i class="fa fa-check"></i><b>8.1</b> Latent Dirichlet allocation</a></li>
<li class="chapter" data-level="8.2" data-path="topic-modeling.html"><a href="topic-modeling.html#document-topic-probabilities"><i class="fa fa-check"></i><b>8.2</b> Document-topic probabilities</a></li>
</ul></li>
<li class="chapter" data-level="9" data-path="words-relationships-analysis.html"><a href="words-relationships-analysis.html"><i class="fa fa-check"></i><b>9</b> Words’ relationships analysis</a><ul>
<li class="chapter" data-level="9.1" data-path="words-relationships-analysis.html"><a href="words-relationships-analysis.html#extracting-bi-grams"><i class="fa fa-check"></i><b>9.1</b> Extracting bi-grams</a></li>
<li class="chapter" data-level="9.2" data-path="words-relationships-analysis.html"><a href="words-relationships-analysis.html#analyzing-bi-grams"><i class="fa fa-check"></i><b>9.2</b> Analyzing bi-grams</a></li>
<li class="chapter" data-level="9.3" data-path="words-relationships-analysis.html"><a href="words-relationships-analysis.html#visualizing-a-network-of-bigrams"><i class="fa fa-check"></i><b>9.3</b> Visualizing a network of bigrams</a></li>
</ul></li>
<li class="chapter" data-level="10" data-path="document-term-matrix.html"><a href="document-term-matrix.html"><i class="fa fa-check"></i><b>10</b> Document-term matrix</a><ul>
<li class="chapter" data-level="10.1" data-path="document-term-matrix.html"><a href="document-term-matrix.html#converting-dtm-into-dataframe"><i class="fa fa-check"></i><b>10.1</b> COnverting DTM into dataframe</a></li>
<li class="chapter" data-level="10.2" data-path="document-term-matrix.html"><a href="document-term-matrix.html#generating-document-term-matrix"><i class="fa fa-check"></i><b>10.2</b> Generating Document-term matrix</a></li>
</ul></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Natural Language Processing with R</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="document-term-matrix" class="section level1">
<h1><span class="header-section-number">Chapter 10</span> Document-term matrix</h1>
<p>A document-term matrix is a mathematical matrix that describes the frequency of terms that occur in a collection of documents. In a document-term matrix:</p>
<ul>
<li>Rows correspond to documents in the collection and</li>
<li>Columns correspond to terms</li>
<li>Values contain the number of appearances of terms in the specified documents</li>
</ul>
<div id="converting-dtm-into-dataframe" class="section level2">
<h2><span class="header-section-number">10.1</span> COnverting DTM into dataframe</h2>
<p>We will see how to transform a document-term matrix into a dataframe. We can find examples of DTM data by loading <code>topicmodels</code> package.</p>
<div class="sourceCode" id="cb168"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb168-1" title="1"><span class="kw">library</span>(tm)</a>
<a class="sourceLine" id="cb168-2" title="2"><span class="kw">library</span>(topicmodels)</a>
<a class="sourceLine" id="cb168-3" title="3"><span class="kw">library</span>(quanteda)</a>
<a class="sourceLine" id="cb168-4" title="4"></a>
<a class="sourceLine" id="cb168-5" title="5"><span class="kw">data</span>(<span class="st">"AssociatedPress"</span>, <span class="dt">package =</span> <span class="st">"topicmodels"</span>)</a>
<a class="sourceLine" id="cb168-6" title="6">AssociatedPress</a></code></pre></div>
<pre><code>## <<DocumentTermMatrix (documents: 2246, terms: 10473)>>
## Non-/sparse entries: 302031/23220327
## Sparsity : 99%
## Maximal term length: 18
## Weighting : term frequency (tf)</code></pre>
<p>The loaded dataset contains 2246 documents and 10473 distinct terms. We notice that this DTM is 99% sparse (99% of document-word paris are zero). We can get the terms using <code>Terms()</code> function.</p>
<div class="sourceCode" id="cb170"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb170-1" title="1">terms =<span class="st"> </span><span class="kw">Terms</span>(AssociatedPress)</a>
<a class="sourceLine" id="cb170-2" title="2"><span class="kw">head</span>(terms)</a></code></pre></div>
<pre><code>## [1] "aaron" "abandon" "abandoned" "abandoning" "abbott"
## [6] "abboud"</code></pre>
<p>In order to analyze the data, we should transform it inot dataframe. We can use <code>tidy()</code> function to do that.</p>
<div class="sourceCode" id="cb172"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb172-1" title="1">ap_td =<span class="st"> </span><span class="kw">tidy</span>(AssociatedPress)</a>
<a class="sourceLine" id="cb172-2" title="2">ap_td</a></code></pre></div>
<pre><code>## # A tibble: 302,031 x 3
## document term count
## <int> <chr> <dbl>
## 1 1 adding 1
## 2 1 adult 2
## 3 1 ago 1
## 4 1 alcohol 1
## 5 1 allegedly 1
## 6 1 allen 1
## 7 1 apparently 2
## 8 1 appeared 1
## 9 1 arrested 1
## 10 1 assault 1
## # ... with 302,021 more rows</code></pre>
<p>Once we have the data in a dataframe format, we can perform some analysis. Here is an example of applying sentiment analysis to evaluate the negative and positive terms in the collection.</p>
<div class="sourceCode" id="cb174"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb174-1" title="1"><span class="co"># using "bing" database to attribute negative/positive attribute to terms</span></a>
<a class="sourceLine" id="cb174-2" title="2">ap_sentiments =<span class="st"> </span>ap_td <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb174-3" title="3"><span class="st"> </span><span class="kw">inner_join</span>(<span class="kw">get_sentiments</span>(<span class="st">"bing"</span>), <span class="dt">by =</span> <span class="kw">c</span>(<span class="dt">term =</span> <span class="st">"word"</span>))</a>
<a class="sourceLine" id="cb174-4" title="4">ap_sentiments</a></code></pre></div>
<pre><code>## # A tibble: 30,094 x 4
## document term count sentiment
## <int> <chr> <dbl> <chr>
## 1 1 assault 1 negative
## 2 1 complex 1 negative
## 3 1 death 1 negative
## 4 1 died 1 negative
## 5 1 good 2 positive
## 6 1 illness 1 negative
## 7 1 killed 2 negative
## 8 1 like 2 positive
## 9 1 liked 1 positive
## 10 1 miracle 1 positive
## # ... with 30,084 more rows</code></pre>
<div class="sourceCode" id="cb176"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb176-1" title="1"><span class="co"># plot the results</span></a>
<a class="sourceLine" id="cb176-2" title="2"><span class="kw">library</span>(ggplot2)</a>
<a class="sourceLine" id="cb176-3" title="3"></a>
<a class="sourceLine" id="cb176-4" title="4">ap_sentiments <span class="op">%>%</span></a>
<a class="sourceLine" id="cb176-5" title="5"><span class="st"> </span><span class="kw">count</span>(sentiment, term, <span class="dt">wt =</span> count) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb176-6" title="6"><span class="st"> </span><span class="kw">ungroup</span>() <span class="op">%>%</span></a>
<a class="sourceLine" id="cb176-7" title="7"><span class="st"> </span><span class="kw">filter</span>(n <span class="op">>=</span><span class="st"> </span><span class="dv">200</span>) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb176-8" title="8"><span class="st"> </span><span class="kw">mutate</span>(<span class="dt">n =</span> <span class="kw">ifelse</span>(sentiment <span class="op">==</span><span class="st"> "negative"</span>, <span class="op">-</span>n, n)) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb176-9" title="9"><span class="st"> </span><span class="kw">mutate</span>(<span class="dt">term =</span> <span class="kw">reorder</span>(term, n)) <span class="op">%>%</span></a>
<a class="sourceLine" id="cb176-10" title="10"><span class="st"> </span><span class="kw">ggplot</span>(<span class="kw">aes</span>(term, n, <span class="dt">fill =</span> sentiment)) <span class="op">+</span></a>
<a class="sourceLine" id="cb176-11" title="11"><span class="st"> </span><span class="kw">geom_bar</span>(<span class="dt">stat =</span> <span class="st">"identity"</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb176-12" title="12"><span class="st"> </span><span class="kw">ylab</span>(<span class="st">"Contribution to sentiment"</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb176-13" title="13"><span class="st"> </span><span class="kw">coord_flip</span>()</a></code></pre></div>
<p><img src="NLP-book_files/figure-html/unnamed-chunk-30-1.png" width="672" /></p>
</div>
<div id="generating-document-term-matrix" class="section level2">
<h2><span class="header-section-number">10.2</span> Generating Document-term matrix</h2>
<p>Some algorithms may need document-term matrix as input. The <code>cast_dtm</code> function enable the generation of DTM structure from a dataframe.</p>
<div class="sourceCode" id="cb177"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb177-1" title="1">ap_td <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb177-2" title="2"><span class="st"> </span><span class="kw">cast_dtm</span>(document, term, count)</a></code></pre></div>
<pre><code>## <<DocumentTermMatrix (documents: 2246, terms: 10473)>>
## Non-/sparse entries: 302031/23220327
## Sparsity : 99%
## Maximal term length: 18
## Weighting : term frequency (tf)</code></pre>
<p>We can also generate a Document-feature matrix by using the <code>cast_dfm</code> function</p>
<div class="sourceCode" id="cb179"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb179-1" title="1">ap_td <span class="op">%>%</span><span class="st"> </span></a>
<a class="sourceLine" id="cb179-2" title="2"><span class="st"> </span><span class="kw">cast_dfm</span>(document, term, count)</a></code></pre></div>
<pre><code>## Document-feature matrix of: 2,246 documents, 10,473 features (98.7% sparse).
## features
## docs adding adult ago alcohol allegedly allen apparently appeared arrested
## 1 1 2 1 1 1 1 2 1 1
## 2 0 0 0 0 0 0 0 1 0
## 3 0 0 1 0 0 0 0 1 0
## 4 0 0 3 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 2 0 0 0 0 0 0
## features
## docs assault
## 1 1
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## [ reached max_ndoc ... 2,240 more documents, reached max_nfeat ... 10,463 more features ]</code></pre>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="words-relationships-analysis.html" class="navigation navigation-prev navigation-unique" aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": ["NLP-book.pdf", "NLP-book.epub"],
"toc": {
"collapse": "subsection"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>