-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSpamclassifier.py
85 lines (58 loc) · 2.28 KB
/
Spamclassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#@author: TUSHAR SINGH
#@SMS_SPAM_DETECTION
#@IDE: Syder
# importing the Dataset
import pandas as pd
# UCI Machine Learning Repo
# dataset: https://archive.ics.uci.edu/dataset/228/sms+spam+collection
messages = pd.read_csv('smsspamcollection/SMSSpamCollection', sep='\t',
names=["label", "message"])
#Data cleaning and preprocessing
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
corpus = []
for i in range(0, len(messages)):
review = re.sub('[^a-zA-Z]', ' ', messages['message'][i])
review = review.lower()
review = review.split()
review = [ps.stem(word) for word in review if not word in stopwords.words('english')]
review = ' '.join(review)
corpus.append(review)
# Creating the Bag of Words model
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=2500)
X = cv.fit_transform(corpus).toarray()
y=pd.get_dummies(messages['label'])
y=y.iloc[:,1].values
# Train Test Split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
# Training model using Naive bayes classifier
from sklearn.naive_bayes import MultinomialNB
spam_detect_model = MultinomialNB().fit(X_train, y_train)
y_pred=spam_detect_model.predict(X_test)
from sklearn.metrics import accuracy_score
print("accuracy:", accuracy_score(y_test, y_pred))
#%%
#TF_IDF
from sklearn.feature_extraction.text import TfidfVectorizer
# fit
tfvectorizer = TfidfVectorizer(max_features=2500)
X = tfvectorizer.fit_transform(corpus).toarray()
y=pd.get_dummies(messages['label'])
y=y.iloc[:,1].values
# Train Test Split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
# Training model using Naive bayes classifier
from sklearn.naive_bayes import MultinomialNB
spam_detect_model = MultinomialNB().fit(X_train, y_train)
y_pred=spam_detect_model.predict(X_test)
from sklearn.metrics import accuracy_score
print("accuracy:", accuracy_score(y_test, y_pred))
#%%
#Accuracy by BOW >> TF-IDF