-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_functions.py
533 lines (430 loc) · 19.8 KB
/
plot_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Import
import os
import random
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
# My import
import constants as const
import utils.general_functions as general
# ************************************** #
# *********** PLOT FUNCTIONS *********** #
# ************************************** #
def show_and_save_plot(show, save, plot_folder, plot_name, plot_extension, dpi=96):
"""
Manage the display and saving of a plot.
:param show: If True, display the plot.
:param save: If True, save the plot.
:param plot_folder: The directory where the plot will be saved.
:param plot_name: The name of the plot file (excluding the extension).
:param plot_extension: The file extension of the plot (e.g., 'png', 'jpg').
:param dpi: Dots per inch (resolution) for the saved image.
Default is 96.
:return: None
"""
if show and save: # show and store plot
general.makedir(plot_folder)
plt.savefig(os.path.join(plot_folder, plot_name + plot_extension), dpi=dpi)
plt.show()
elif show and not save: # show plot
plt.show()
elif save and not show: # store plot
general.makedir(plot_folder)
plt.savefig(os.path.join(plot_folder, plot_name + plot_extension), dpi=dpi)
plt.close()
else: # do not show or save
plt.close()
# Show the amount of data per class
def plot_class_distribution(train_data, test_data, show_on_screen=True, store_in_folder=True):
"""
Plot a histogram showing the distribution of data per class in the dataset.
:param train_data: Pandas.DataFrame.
The training data as a Pandas DataFrame.
:param test_data: Pandas.DataFrame.
The test data as a Pandas DataFrame.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Defaults to True.
Notes:
The histogram illustrates the number of images for each class in both the training and test sets.
:return: None
"""
# plot dataframe, counting data in it
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(16, 8))
fig.suptitle("DATA VISUALIZATION CHART", fontsize=18, weight="bold")
sns.countplot(data=train_data, x="label", ax=ax1, hue="label", edgecolor="black")
sns.countplot(data=test_data, x="label", ax=ax2, hue="label", edgecolor="black")
# settings first plot
ax1.set_title("Training Set", fontsize=16, weight="bold")
ax1.set_xlabel(xlabel="Label", fontsize=14)
ax1.set_ylabel(ylabel="Count", fontsize=14)
# settings second plot
ax2.set_title("Test Set", fontsize=16, weight="bold")
ax2.set_xlabel(xlabel="Label", fontsize=14)
ax2.set_ylabel(ylabel="Count", fontsize=14)
# plot the exact amount of train's data
for data in ax1.patches:
x = data.get_x() + data.get_width() / 2 # text centered
y = data.get_y() + data.get_height() # text placed at column height => number of images in that label
value = int(data.get_height()) # get value
ax1.text(x, y, value, ha="center", fontsize=14, weight="bold")
# plot the exact amount of test's data
for data in ax2.patches:
x = data.get_x() + data.get_width() / 2 # text centered
y = data.get_y() + data.get_height() # text placed at column height => number of images in that label
value = int(data.get_height()) # get value
ax2.text(x, y, value, ha="center", fontsize=14, weight="bold")
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=const.PLOT_FOLDER,
plot_name="class_distribution_plot",
plot_extension=const.FILE_EXTENSION
)
# Plot some images with the corresponding class label
def plot_view_dataset(train_ds, show_on_screen=True, store_in_folder=True):
"""
Visualize a subset of images from the dataset.
The function plots a 3x3 grid of images from the dataset's first batch,
along with their corresponding labels.
The images are displayed with labels, and the plot can be shown on screen and/or
saved to a specified folder.
:param train_ds: tf.data.Dataset
A TensorFlow dataset object corresponding to the training data.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Defaults to True.
:returns: None
"""
# Plot
plt.figure(figsize=(16, 8))
# Add a title to the entire plot
plt.suptitle(t="Dataset Visual Example with Class Labels", fontsize=18, weight="bold")
# Take the first batch of images and labels from the dataset
for images, labels in train_ds.take(1):
# Loop through the first 9 images in the batch
for i in range(9):
# Create subplots in a 3x3 grid
plt.subplot(3, 3, i + 1)
# Display the image
plt.imshow(images[i].numpy().astype("uint8"))
# Determine the class label based on the dataset
class_label = "chihuahua" if labels[i] == 0 else "muffin"
# Add title with label information
plt.title(label=f"{class_label}", fontsize=16)
# Adjust layout and turn off axis for cleaner presentation
plt.tight_layout()
plt.axis("off")
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=const.PLOT_FOLDER,
plot_name="show_images_plot",
plot_extension=const.FILE_EXTENSION
)
# Plot augmented images
def plot_data_augmentation(train_ds, data_augmentation, show_on_screen=True, store_in_folder=True):
"""
Plot augmented images generated from a data augmentation pipeline.
:param train_ds: The training dataset contains original images.
:param data_augmentation: The data augmentation pipeline applied to the images.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Defaults to True.
:returns: None
"""
# Plot
plt.figure(figsize=(10, 8))
# Add a title to the entire plot
plt.suptitle(t="Data Augmentation Example", fontsize=22, weight="bold")
# Take the first batch of images from the dataset
for images, _ in train_ds.take(1):
# Loop through the first 9 images in the batch
for i in range(9):
# Apply data augmentation
augmented_images = data_augmentation(images)
# Create subplots in a 3x3 grid
plt.subplot(3, 3, i + 1)
# Display the image
plt.imshow(augmented_images[0].numpy().astype("uint8"))
plt.axis("off")
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=const.PLOT_FOLDER,
plot_name="data_augmentation_plot",
plot_extension=const.FILE_EXTENSION
)
def plot_history(history, model_name, show_on_screen=True, store_in_folder=True):
"""
Visualize the training history of the model.
:param history: The training history of the model (e.g., history = model.fit()).
:param model_name: The name of the model for labeling the plot.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Defaults to True.
:return: None
"""
# Plot
plt.figure(figsize=(16, 8))
# Add a title to the entire plot
plt.suptitle("{} Training History".format(model_name), fontsize=18)
# Accuracy
plt.subplot(1, 2, 1)
plt.plot(history.history["accuracy"], linewidth=3)
plt.plot(history.history["val_accuracy"], linewidth=3)
plt.title(label="Training and Validation Accuracy", fontsize=16)
plt.ylabel(ylabel="accuracy", fontsize=14)
plt.xlabel(xlabel="epoch", fontsize=14)
plt.grid()
plt.legend(["Train", "Validation"], loc="best")
# Loss
plt.subplot(1, 2, 2)
plt.plot(history.history["loss"], linewidth=3)
plt.plot(history.history["val_loss"], linewidth=3)
plt.title(label="Training and Validation Loss", fontsize=16)
plt.ylabel(ylabel="Loss", fontsize=14)
plt.xlabel(xlabel="epoch", fontsize=14)
plt.grid()
plt.legend(["Train", "Validation"], loc="best")
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, model_name),
plot_name=model_name + "_training_history_plot",
plot_extension=const.FILE_EXTENSION
)
# Plot the training history for each fold in kfold cross validation
def plot_fold_history(fold_history, model_name, show_on_screen=True, store_in_folder=True):
"""
Visualize the training history of a model during KFold cross-validation
:param fold_history: The training history of the model (e.g., history = model.fit()), collected during KFold.
:param model_name: The name of the model for labeling the plot.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Default is True.
:returns: None
"""
# Plot the training history for each fold
for fold in range(len(fold_history)):
# Plot size
plt.figure(figsize=(16, 8))
# Add a title to the entire plot
plt.suptitle("{} Fold {} Training History".format(model_name, fold + 1), fontsize=18)
# Accuracy
plt.subplot(1, 3, 1)
plt.plot(fold_history[fold].history["accuracy"], linewidth=3)
plt.plot(fold_history[fold].history["val_accuracy"], linewidth=3)
plt.title(label="Training and Validation Accuracy", fontsize=16)
plt.ylabel(ylabel="accuracy", fontsize=14)
plt.xlabel(xlabel="epoch", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.grid()
plt.legend(["Train", "Validation"], loc="upper right")
# Loss
plt.subplot(1, 3, 2)
plt.plot(fold_history[fold].history["loss"], linewidth=3)
plt.plot(fold_history[fold].history["val_loss"], linewidth=3)
plt.title(label="Training and Validation Loss", fontsize=16)
plt.ylabel(ylabel="Loss", fontsize=14)
plt.xlabel(xlabel="epoch", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.grid()
plt.legend(["Train", "Validation"], loc="upper right")
# Zero-one Loss
plt.subplot(1, 3, 3)
plt.plot(fold_history[fold].history["zero_one_loss"], linewidth=3)
plt.plot(fold_history[fold].history["val_zero_one_loss"], linewidth=3)
plt.title(label="Training and Validation Zero-one Loss", fontsize=16)
plt.ylabel(ylabel="Zero-one Loss", fontsize=14)
plt.xlabel(xlabel="epoch", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.grid()
plt.legend(["Train", "Validation"], loc="upper right")
# Show and store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, "KFold", model_name),
plot_name=model_name + "_fold_" + f"{fold + 1}_training_history_plot",
plot_extension=const.FILE_EXTENSION
)
# Plot confusion matrix
def plot_confusion_matrix(model, model_name, x_test, y_test, show_on_screen=True, store_in_folder=True):
"""
Plot the Confusion Matrix.
:param model: The model.
:param model_name: Name assigned to the model.
:param x_test: Input values of the test dataset.
:param y_test: Target values of the test dataset.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Defaults to True.
:return: None
"""
# Predict
predict = model.predict(x=x_test, verbose=0)
# Convert the predictions to binary classes (0 or 1)
y_pred = (predict > 0.5).astype("int32")
# Plot settings
fig, ax = plt.subplots(figsize=(12, 8))
ax.set_title(model_name + " Confusion Matrix", fontsize=18)
ax.set_xlabel(xlabel="Predicted Label", fontsize=16)
ax.set_ylabel(ylabel="True Label", fontsize=16)
ax.tick_params(labelsize=12)
# Compute the confusion matrix
confusion = confusion_matrix(y_test, y_pred)
# Display the confusion matrix as a heatmap
display = ConfusionMatrixDisplay(confusion_matrix=confusion, display_labels=["Chihuahua", "Muffin"])
display.plot(cmap="viridis", values_format="d", ax=ax)
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, model_name),
plot_name=model_name + "_confusion_matrix_plot",
plot_extension=const.FILE_EXTENSION
)
# Bar graph: Real values vs Predict values
def plot_model_predictions_evaluation(model, model_name, class_list, x_test, y_test, show_on_screen=True,
store_in_folder=True):
"""
Plot a bar graph that compares true classes with the ones predicted by the model in input.
:param model: tensorflow.keras.Model
The input model for predictions.
:param model_name: str
The name of the model.
:param class_list: list of str
The list of class names.
:param x_test: numpy.ndarray
Input values of the test dataset.
:param y_test: numpy.ndarray
Target values of the test dataset.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Default is True.
:returns: None
"""
# Predict
predict = model.predict(x=x_test, verbose=0)
# Convert the predictions to binary classes (0 or 1)
y_pred = (predict > 0.5).astype("int32")
# Classes
classes = {i: const.CLASS_LIST[i] for i in range(0, len(const.CLASS_LIST))}
# Create a DataFrame for storing class comparison data
clf_data = pd.DataFrame(columns=["real_class_num", "predict_class_num",
"real_class_label", "predict_class_label"])
clf_data["real_class_num"] = y_test
clf_data["predict_class_num"] = y_pred
# Compare True classes with predicted ones
comparison_column = np.where(clf_data["real_class_num"] == clf_data["predict_class_num"], True, False)
clf_data["check"] = comparison_column
clf_data["real_class_label"] = clf_data["real_class_num"].replace(classes)
clf_data["predict_class_label"] = clf_data["predict_class_num"].replace(classes)
# Create a DataFrame for input data and count
input_data = pd.DataFrame()
input_data[["Images", "Real_Value"]] = \
clf_data[["real_class_label", "predict_class_label"]].groupby(["real_class_label"], as_index=False).count()
input_data[["Images", "Predict_Value"]] = \
clf_data[["real_class_label", "predict_class_label"]].groupby(["predict_class_label"], as_index=False).count()
# Plot
ax = input_data.plot(kind="bar", figsize=(16, 8), fontsize=12,
width=0.6, color={"#006400", "#ffd700"}, edgecolor="black")
ax.set_xticklabels(class_list, rotation=0)
ax.legend(["Real Value", "Predict Value"], fontsize=9, loc="upper right")
plt.title(label=model_name + " Predictions Evaluation", fontsize=18)
plt.xlabel(xlabel="Classes", fontsize=16)
plt.ylabel(ylabel="Occurrences", fontsize=16)
# Annotate each bar with its height, i.e., the Real Value vs the Predicted one
for p in ax.patches:
ax.annotate(format(p.get_height()),
(p.get_x() + (p.get_width() / 2), p.get_height()), ha="center", va="center",
xytext=(0, 5), textcoords="offset points", fontsize=14, rotation=0)
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, model_name),
plot_name=model_name + "_prediction_evaluation_plot",
plot_extension=const.FILE_EXTENSION
)
# Plot test images with prediction
def plot_visual_prediction(model, model_name, x_test, y_test, show_on_screen=True, store_in_folder=True):
"""
Plot test images with predictions made by the given model.
:param model: tensorflow.keras.Model
The trained model for making predictions.
:param model_name: str
A string representing the name of the model.
:param x_test: numpy.ndarray
Input test data (images).
:param y_test: numpy.ndarray
True labels for the test data.
:param show_on_screen: If True, display the plot on the screen.
Default is True.
:param store_in_folder: If True, save the plot in a specified folder.
Default is True.
:returns: None
"""
# Select random images from the Test set
num_samples = min(10, len(x_test)) # Adjust the number of samples to display
random.seed(11) # Set random seed
random_indices = random.sample(range(len(x_test)), num_samples)
# Select a subset of x_test and y_test based on the random indices
x_test = x_test[random_indices]
y_test = y_test[random_indices]
# Predict
predicts = model.predict(x=x_test, verbose=0)
# Compute probability
prediction_probability = predicts * 100
# Convert the predictions to binary classes (0 or 1)
predicted_classes = (predicts > 0.5).astype("int32")
# Assign class name to class indices (chihuahua = 0, muffin = 1)
predicted_class_labels = ["chihuahua" if pred_label == 0 else "muffin" for pred_label in predicted_classes]
# Plot configuration
figure_size = (16, 8)
subplot_rows, subplot_cols = 2, 5
# Plot
plt.figure(figsize=figure_size)
# Add a title to the entire plot
plt.suptitle("{} Visual Prediction".format(model_name), fontsize=18, weight="bold")
for i in range(min(subplot_rows * subplot_cols, len(x_test))):
plt.subplot(subplot_rows, subplot_cols, i + 1)
# Extract a single image from the test data using the index
single_image = x_test[i]
plt.imshow(single_image)
# True class indices, assuming 0 represents "chihuahua" and 1 represents "muffin"
true_class_label = "chihuahua" if y_test[i] == 0 else "muffin"
# Add Visual aid to check the correctness of the prediction, for an intuitive read of the data
title_color = "green" if true_class_label == predicted_class_labels[i] else "red"
# Adjust probability display for chihuahua predictions (more intuitive)
if predicted_class_labels[i] == "chihuahua":
probability_display = 100 - int(prediction_probability[i])
else:
probability_display = int(prediction_probability[i])
# Add a title to all images (true vs predicted class label) with a background for a better presentation
plt.title(
label="TRUE: {}\nPREDICTED: {} ({:.4g}%)".format(true_class_label, predicted_class_labels[i],
probability_display),
fontsize=10, color=title_color,
bbox=dict(facecolor="lightgray", alpha=0.7, edgecolor="black", boxstyle="round,pad=0.5"),
fontweight="bold"
)
plt.tight_layout()
plt.axis("off")
# Show and/or store the plot
show_and_save_plot(
show=show_on_screen, save=store_in_folder,
plot_folder=os.path.join(const.PLOT_FOLDER, model_name),
plot_name=model_name + "_visual_prediction_plot",
plot_extension=const.FILE_EXTENSION
)