|
22 | 22 | }, |
23 | 23 | { |
24 | 24 | "cell_type": "code", |
25 | | - "execution_count": null, |
26 | 25 | "source": [ |
27 | 26 | "from safeds.data.tabular.containers import Table\n", |
28 | 27 | "\n", |
|
33 | 32 | "metadata": { |
34 | 33 | "collapsed": false |
35 | 34 | }, |
36 | | - "outputs": [] |
| 35 | + "outputs": [], |
| 36 | + "execution_count": null |
37 | 37 | }, |
38 | 38 | { |
39 | 39 | "cell_type": "markdown", |
|
47 | 47 | }, |
48 | 48 | { |
49 | 49 | "cell_type": "code", |
50 | | - "execution_count": null, |
51 | 50 | "source": [ |
52 | 51 | "train_table, testing_table = titanic.split_rows(0.6)\n", |
53 | 52 | "\n", |
|
56 | 55 | "metadata": { |
57 | 56 | "collapsed": false |
58 | 57 | }, |
59 | | - "outputs": [] |
| 58 | + "outputs": [], |
| 59 | + "execution_count": null |
60 | 60 | }, |
61 | 61 | { |
62 | 62 | "cell_type": "markdown", |
|
72 | 72 | }, |
73 | 73 | { |
74 | 74 | "cell_type": "code", |
75 | | - "execution_count": null, |
76 | 75 | "source": [ |
77 | 76 | "from safeds.data.tabular.transformation import OneHotEncoder\n", |
78 | 77 | "\n", |
|
81 | 80 | "metadata": { |
82 | 81 | "collapsed": false |
83 | 82 | }, |
84 | | - "outputs": [] |
| 83 | + "outputs": [], |
| 84 | + "execution_count": null |
85 | 85 | }, |
86 | 86 | { |
87 | 87 | "cell_type": "markdown", |
|
94 | 94 | }, |
95 | 95 | { |
96 | 96 | "cell_type": "code", |
97 | | - "execution_count": null, |
98 | 97 | "source": "transformed_table = encoder.transform(train_table)", |
99 | 98 | "metadata": { |
100 | 99 | "collapsed": false |
101 | 100 | }, |
102 | | - "outputs": [] |
| 101 | + "outputs": [], |
| 102 | + "execution_count": null |
103 | 103 | }, |
104 | 104 | { |
105 | 105 | "cell_type": "markdown", |
|
110 | 110 | }, |
111 | 111 | { |
112 | 112 | "cell_type": "code", |
113 | | - "execution_count": null, |
114 | 113 | "source": [ |
115 | 114 | "extra_names = [\"id\", \"name\", \"ticket\", \"cabin\", \"port_embarked\", \"age\", \"fare\"]\n", |
116 | 115 | "\n", |
|
119 | 118 | "metadata": { |
120 | 119 | "collapsed": false |
121 | 120 | }, |
122 | | - "outputs": [] |
| 121 | + "outputs": [], |
| 122 | + "execution_count": null |
123 | 123 | }, |
124 | 124 | { |
125 | 125 | "cell_type": "markdown", |
|
130 | 130 | }, |
131 | 131 | { |
132 | 132 | "cell_type": "code", |
133 | | - "execution_count": null, |
134 | 133 | "source": [ |
135 | 134 | "from safeds.ml.classical.classification import RandomForestClassifier\n", |
136 | 135 | "\n", |
|
140 | 139 | "metadata": { |
141 | 140 | "collapsed": false |
142 | 141 | }, |
143 | | - "outputs": [] |
| 142 | + "outputs": [], |
| 143 | + "execution_count": null |
144 | 144 | }, |
145 | 145 | { |
146 | 146 | "cell_type": "markdown", |
|
154 | 154 | }, |
155 | 155 | { |
156 | 156 | "cell_type": "code", |
157 | | - "execution_count": null, |
158 | 157 | "source": [ |
159 | 158 | "encoder = OneHotEncoder().fit(test_table, [\"sex\"])\n", |
160 | 159 | "transformed_test_table = encoder.transform(test_table)\n", |
|
163 | 162 | " transformed_test_table\n", |
164 | 163 | ")\n", |
165 | 164 | "#For visualisation purposes we only print out the first 15 rows.\n", |
166 | | - "prediction.to_table().slice_rows(start=0, end=15)" |
| 165 | + "prediction.to_table().slice_rows(start=0, length=15)" |
167 | 166 | ], |
168 | 167 | "metadata": { |
169 | 168 | "collapsed": false |
170 | 169 | }, |
171 | | - "outputs": [] |
| 170 | + "outputs": [], |
| 171 | + "execution_count": null |
172 | 172 | }, |
173 | 173 | { |
174 | 174 | "cell_type": "markdown", |
|
181 | 181 | }, |
182 | 182 | { |
183 | 183 | "cell_type": "code", |
184 | | - "execution_count": null, |
185 | 184 | "source": [ |
186 | 185 | "encoder = OneHotEncoder().fit(test_table, [\"sex\"])\n", |
187 | 186 | "testing_table = encoder.transform(testing_table)\n", |
|
192 | 191 | "metadata": { |
193 | 192 | "collapsed": false |
194 | 193 | }, |
195 | | - "outputs": [] |
| 194 | + "outputs": [], |
| 195 | + "execution_count": null |
196 | 196 | } |
197 | 197 | ], |
198 | 198 | "metadata": { |
|
0 commit comments