forked from dculibrk/edge_boxes_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedgesDemo.m
26 lines (21 loc) · 1.17 KB
/
edgesDemo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
% Demo for Structured Edge Detector (please see readme.txt first).
%% set opts for training (see edgesTrain.m)
opts=edgesTrain(); % default options (good settings)
opts.modelDir='models/'; % model will be in models/forest
opts.modelFnm='modelBsds'; % model name
opts.nPos=5e5; opts.nNeg=5e5; % decrease to speedup training
opts.useParfor=0; % parallelize if sufficient memory
%% train edge detector (~20m/8Gb per tree, proportional to nPos/nNeg)
tic, model=edgesTrain(opts); toc; % will load model if already trained
%% set detection parameters (can set after training)
model.opts.multiscale=0; % for top accuracy set multiscale=1
model.opts.sharpen=2; % for top speed set sharpen=0
model.opts.nTreesEval=4; % for top speed set nTreesEval=1
model.opts.nThreads=4; % max number threads for evaluation
model.opts.nms=0; % set to true to enable nms
%% evaluate edge detector on BSDS500 (see edgesEval.m)
if(0), edgesEval( model, 'show',1, 'name','' ); end
%% detect edge and visualize results
I = imread('peppers.png');
tic, E=edgesDetect(I,model); toc
figure(1); im(I); figure(2); im(1-E);