forked from dculibrk/edge_boxes_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedgesEval.m
76 lines (70 loc) · 3.21 KB
/
edgesEval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function varargout = edgesEval( model, varargin )
% Run and evaluate structured edge detector on BSDS500.
%
% This function first runs the trained structured edge detector on every
% test or validation image in BSDS then call edgesEvalDir.m to perform the
% actual edge evaluation. edgesEval is specific to the structured edge
% detector and BSDS, edgesEvalDir is general purpose edge evaluation code.
% For example usage of edgesEval see edgesDemo.
%
% USAGE
% varargout = edgesEval( model, prms )
%
% INPUTS
% model - structured edge model trained with edgesTrain
% prms - parameters (struct or name/value pairs)
% .dataType - ['test'] should be either 'test' or 'val'
% .name - [''] name to append to evaluation
% .opts - {} list of model opts to overwrite
% .show - [0] if true plot results using edgesEvalPlot
% .pDistr - [{'type','parfor'}] parameters for fevalDistr
% .cleanup - [0] if true delete temporary files
% .thrs - [99] number or vector of thresholds for evaluation
% .maxDist - [.0075] maximum tolerance for edge match
%
% OUTPUTS
% varargout - same outputs as edgesEvalDir
%
% EXAMPLE
%
% See also edgesDemo, edgesDetect, edgesEvalDir, edgesEvalPlot
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
% get default parameters
dfs={'dataType','test', 'name','', 'opts',{}, 'show',0, ...
'pDistr',{{'type','parfor'}}, 'cleanup',0, 'thrs',99, 'maxDist',.0075 };
p=getPrmDflt(varargin,dfs,1);
% load model and update model.opts acoording to opts
if( ischar(model) ), model=load(model); model=model.model; end
for i=1:length(p.opts)/2, model.opts.(p.opts{i*2-1})=p.opts{i*2}; end
rgbd=model.opts.rgbd; model.opts.nms=1;
% get list of relevant directories (image, depth, gt, results)
name = [model.opts.modelFnm,p.name];
imgDir = fullfile(model.opts.bsdsDir,'images',p.dataType);
depDir = fullfile(model.opts.bsdsDir,'depth',p.dataType);
gtDir = fullfile(model.opts.bsdsDir,'groundTruth',p.dataType);
resDir = fullfile(model.opts.modelDir,p.dataType,name);
assert(exist(imgDir,'dir')==7); assert(exist(gtDir,'dir')==7);
% run edgesDetect() on every image in imgDir and store in resDir
if( ~exist(fullfile([resDir '-eval'],'eval_bdry.txt'),'file') )
if(~exist(resDir,'dir')), mkdir(resDir); end
ids=dir(imgDir); ids=ids([ids.bytes]>0); ids={ids.name}; n=length(ids);
ext=ids{1}(end-2:end); for i=1:n, ids{i}=ids{i}(1:end-4); end
res=cell(1,n); for i=1:n, res{i}=fullfile(resDir,[ids{i} '.png']); end
do=false(1,n); for i=1:n, do(i)=~exist(res{i},'file'); end
ids=ids(do); res=res(do); m=length(ids);
parfor i=1:m, id=ids{i};
I = imread(fullfile(imgDir,[id '.' ext])); D=[];
if(rgbd), D=single(imread(fullfile(depDir,[id '.png'])))/1e4; end
if(rgbd==1), I=D; elseif(rgbd==2), I=cat(3,single(I)/255,D); end
E=edgesDetect(I,model); imwrite(uint8(E*255),res{i});
end
end
% perform actual evaluation using edgesEvalDir
varargout=cell(1,max(1,nargout));
[varargout{:}] = edgesEvalDir('resDir',resDir,'gtDir',gtDir,...
'pDistr',p.pDistr,'cleanup',p.cleanup,'thrs',p.thrs,'maxDist',p.maxDist);
if( p.show ), figure(p.show); edgesEvalPlot(resDir,name); end
end