forked from dculibrk/edge_boxes_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedgesEvalDir.m
139 lines (127 loc) · 5.71 KB
/
edgesEvalDir.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function varargout = edgesEvalDir( varargin )
% Calculate edge precision/recall results for directory of edge images.
%
% Enhanced replacement for boundaryBench() from BSDS500 code:
% http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
% Uses same format for results and is fully compatible with boundaryBench.
% Given default prms results are *identical* to boundaryBench with the
% additional 9th output of R50 (recall at 50% precision).
%
% The odsF/P/R/T are results at the ODS (optimal dataset scale).
% The oisF/P/R are results at the OIS (optimal image scale).
% Naming convention: P=precision, R=recall, F=2/(1/P+1/R), T=threshold.
%
% In addition to the outputs, edgesEvalDir() creates three files:
% eval_bdry_img.txt - per image OIS results [imgId T R P F]
% eval_bdry_thr.txt - per threshold ODS results [T R P F]
% eval_bdry.txt - complete results (*re-ordered* copy of output)
% These files are identical to the ones created by boundaryBench.
%
% USAGE
% [odsF,odsP,odsR,odsT,oisF,oisP,oisR,AP,R50] = edgesEvalDir( prms )
% [ODS,~,~,~,OIS,~,~,AP,R50] = edgesEvalDir( prms )
%
% INPUTS
% prms - parameters (struct or name/value pairs)
% .resDir - ['REQ'] dir containing edge detection results (.png)
% .gtDir - ['REQ'] dir containing ground truth (.mat)
% .pDistr - [{'type','parfor'}] parameters for fevalDistr
% .cleanup - [0] if true delete temporary files
% .thrs - [99] number or vector of thresholds for evaluation
% .maxDist - [.0075] maximum tolerance for edge match
% .thin - [1] if true thin boundary maps
%
% OUTPUTS
% odsF/P/R/T - F-measure, precision, recall and threshold at ODS
% oisF/P/R - F-measure, precision, and recall at OIS
% AP - average precision
% R50 - recall at 50% precision
%
% EXAMPLE
%
% See also edgesEvalImg, edgesEvalPlot
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
% get additional parameters
dfs={ 'resDir','REQ', 'gtDir','REQ', 'pDistr',{{'type','parfor'}}, ...
'cleanup',0, 'thrs',99, 'maxDist',.0075, 'thin',1 };
p=getPrmDflt(varargin,dfs,1); resDir=p.resDir; gtDir=p.gtDir;
evalDir=[resDir '-eval/']; if(~exist(evalDir,'dir')), mkdir(evalDir); end
% check if results already exist, if so load and return
fNm = fullfile(evalDir,'eval_bdry.txt');
if(exist(fNm,'file')), R=dlmread(fNm); R=mat2cell2(R,[1 8]);
varargout=R([4 3 2 1 7 6 5 8]); if(nargout<=8), return; end;
R=dlmread(fullfile(evalDir,'eval_bdry_thr.txt')); P=R(:,3); R=R(:,2);
[~,o]=unique(P); R50=interp1(P(o),R(o),max(P(o(1)),.5));
varargout=[varargout R50]; return;
end
% perform evaluation on each image (this part can be very slow)
assert(exist(resDir,'dir')==7); assert(exist(gtDir,'dir')==7);
ids=dir(fullfile(gtDir,'*.mat')); ids={ids.name}; n=length(ids);
do=false(1,n); jobs=cell(1,n); res=cell(1,n);
for i=1:n, id=ids{i}(1:end-4);
res{i}=fullfile(evalDir,[id '_ev1.txt']); do(i)=~exist(res{i},'file');
im1=fullfile(resDir,[id '.png']); gt1=fullfile(gtDir,[id '.mat']);
jobs{i}={im1,gt1,'out',res{i},'thrs',p.thrs,'maxDist',p.maxDist,...
'thin',p.thin}; if(0), edgesEvalImg(jobs{i}{:}); end
end
fevalDistr('edgesEvalImg',jobs(do),p.pDistr{:});
% collect evaluation results
I=dlmread(res{1}); T=I(:,1);
Z=zeros(numel(T),1); cntR=Z; sumR=Z; cntP=Z; sumP=Z;
oisCntR=0; oisSumR=0; oisCntP=0; oisSumP=0; scores=zeros(n,5);
for i=1:n
% load image results and accumulate
I = dlmread(res{i});
cntR1=I(:,2); cntR=cntR+cntR1; sumR1=I(:,3); sumR=sumR+sumR1;
cntP1=I(:,4); cntP=cntP+cntP1; sumP1=I(:,5); sumP=sumP+sumP1;
% compute OIS scores for image
[R,P,F] = computeRPF(cntR1,sumR1,cntP1,sumP1); [~,k]=max(F);
[oisR1,oisP1,oisF1,oisT1] = findBestRPF(T,R,P);
scores(i,:) = [i oisT1 oisR1 oisP1 oisF1];
% oisCnt/Sum will be used to compute dataset OIS scores
oisCntR=oisCntR+cntR1(k); oisSumR=oisSumR+sumR1(k);
oisCntP=oisCntP+cntP1(k); oisSumP=oisSumP+sumP1(k);
end
% compute ODS R/P/F and OIS R/P/F
[R,P,F] = computeRPF(cntR,sumR,cntP,sumP);
[odsR,odsP,odsF,odsT] = findBestRPF(T,R,P);
[oisR,oisP,oisF] = computeRPF(oisCntR,oisSumR,oisCntP,oisSumP);
% compute AP/R50 (interpolating 100 values, has minor bug: should be /101)
if(0), R=[0; R; 1]; P=[1; P; 0]; F=[0; F; 0]; T=[1; T; 0]; end
[~,k]=unique(R); k=k(end:-1:1); R=R(k); P=P(k); T=T(k); F=F(k); AP=0;
if(numel(R)>1), AP=interp1(R,P,0:.01:1); AP=sum(AP(~isnan(AP)))/100; end
[~,o]=unique(P); R50=interp1(P(o),R(o),max(P(o(1)),.5));
% write results to disk
varargout = {odsF,odsP,odsR,odsT,oisF,oisP,oisR,AP,R50};
writeRes(evalDir,'eval_bdry_img.txt',scores);
writeRes(evalDir,'eval_bdry_thr.txt',[T R P F]);
writeRes(evalDir,'eval_bdry.txt',[varargout{[4 3 2 1 7 6 5 8]}]);
% optionally perform cleanup
if( p.cleanup ), delete([evalDir '/*_ev1.txt']);
delete([resDir '/*.png']); rmdir(resDir); end
end
function [R,P,F] = computeRPF(cntR,sumR,cntP,sumP)
% compute precision, recall and F measure given cnts and sums
R=cntR./max(eps,sumR); P=cntP./max(eps,sumP); F=2*P.*R./max(eps,P+R);
end
function [bstR,bstP,bstF,bstT] = findBestRPF(T,R,P)
% linearly interpolate to find best thr for optimizing F
if(numel(T)==1), bstT=T; bstR=R; bstP=P;
bstF=2*P.*R./max(eps,P+R); return; end
A=linspace(0,1,100); B=1-A; bstF=-1;
for j = 2:numel(T)
Rj=R(j).*A+R(j-1).*B; Pj=P(j).*A+P(j-1).*B; Tj=T(j).*A+T(j-1).*B;
Fj=2.*Pj.*Rj./max(eps,Pj+Rj); [f,k]=max(Fj);
if(f>bstF), bstT=Tj(k); bstR=Rj(k); bstP=Pj(k); bstF=f; end
end
end
function writeRes( alg, fNm, vals )
% write results to disk
k=size(vals,2); fNm=fullfile(alg,fNm); fid=fopen(fNm,'w');
if(fid==-1), error('Could not open file %s for writing.',fNm); end
frmt=repmat('%10g ',[1 k]); frmt=[frmt(1:end-1) '\n'];
fprintf(fid,frmt,vals'); fclose(fid);
end