forked from dculibrk/edge_boxes_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspDemo.m
30 lines (25 loc) · 1.33 KB
/
spDemo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
% Demo for Sticky Superpixels (please see readme.txt first).
%% load pre-trained edge detection model and set opts (see edgesDemo.m)
model=load('models/forest/modelBsds'); model=model.model;
model.opts.nms=-1; model.opts.nThreads=4;
model.opts.multiscale=0; model.opts.sharpen=2;
%% set up opts for spDetect (see spDetect.m)
opts = spDetect;
opts.nThreads = 4; % number of computation threads
opts.k = 512; % controls scale of superpixels (big k -> big sp)
opts.alpha = .5; % relative importance of regularity versus data terms
opts.beta = .9; % relative importance of edge versus color terms
opts.merge = 0; % set to small value to merge nearby superpixels at end
%% detect and display superpixels (see spDetect.m)
I = imread('peppers.png');
[E,~,~,segs]=edgesDetect(I,model);
tic, [S,V] = spDetect(I,E,opts); toc
figure(1); im(I); figure(2); im(V);
%% compute ultrametric contour map from superpixels (see spAffinities.m)
tic, [~,~,U]=spAffinities(S,E,segs,opts.nThreads); toc
figure(3); im(1-U); return;
%% compute video superpixels reusing initialization from previous frame
Is=seqIo(which('peds30.seq'),'toImgs'); Vs=single(Is); opts.bounds=0; tic
for i=1:size(Is,4), I=Is(:,:,:,i); E=edgesDetect(I,model);
[opts.seed,Vs(:,:,:,i)]=spDetect(I,E,opts); end; opts.seed=[]; toc
Vs=uint8(Vs*255); playMovie([Is Vs],15,-10,struct('hasChn',1))