forked from dculibrk/edge_boxes_with_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspDetect.m
98 lines (86 loc) · 3.73 KB
/
spDetect.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
function [S,V] = spDetect( I, E, varargin )
% Detect Sticky Superpixels in image.
%
% Detect "Sticky Edge Adhesive Superpixels" in image. High quality, fast
% superpixels that "stick" to edges. Without edge term the code computes
% superpixels using an iterative approach motivated by both SLIC (Achanta
% et al., PAMI12) and SEEDS (Bergh et al., ECCV12) superpixels. With edge
% term added, the superpixels snap to edges, resulting in higher quality
% boundaries. There is no corresponding publication for this code at this
% time but please cite our edge detection work if you use this code.
%
% The most important parameter is k which controls superpixel scale.
% Note that the edge image E is optional (that is E=[] may be used).
%
% USAGE
% opts = spDetect()
% [S,V] = spDetect( I, [E], [opts] )
%
% INPUTS
% I - [h x w x 3] color input image (in [0,255])
% E - [h x w] type single edge image (in [0,1]), or [] array
% opts - parameters (struct or name/value pairs)
% .type - ['sticky'] options are 'sticky' or 'watershed'
% .nIter - [4] number of iterations
% .nThreads - [4] number of computation threads
% .k - [512] controls scale of superpixels (big k -> big sp)
% .alpha - [.5] relative importance of regularity versus data terms
% .beta - [.9] relative importance of edge versus color terms
% .merge - [0] set to small value to merge nearby superpixels at end
% .bounds - [1] if true add boundaries to superpixels
% .seed - [] optional initial seed superpixels
%
% OUTPUTS
% S - [h x w] superpixel label map (S==0 are boundaries)
% V - [h x w] superpixel visualization
%
% EXAMPLE
%
% See also spDemo, spAffinities, watershed
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
% get default parameters
dfs = { 'type','sticky', 'nIter',4, 'nThreads',4, 'k',512, ...
'alpha',.5, 'beta',.9, 'merge',0, 'bounds',1, 'seed',[] };
o = getPrmDflt(varargin,dfs,1); if(nargin==0), S=o; return; end
type=lower(o.type(1)); assert( type=='w' || type=='s' );
sigs = [ o.k*o.alpha/1e4 o.alpha/1e4 ...
(1-o.alpha)*o.beta (1-o.alpha)*(1-o.beta) ];
% check dimensions and type of image and edge map
[h,w,~]=size(I); assert(isa(I,'uint8') && size(I,3)==3);
if(nargin<2 || isempty(E)), E=zeros(h,w,'single'); end
assert(isa(E,'single') && size(E,1)==h && size(E,2)==w);
I=rgbConvert(I,'rgb');
if( type=='w' )
% run watershed algorithm
S = uint32(watershed(convTri(E,1))); b=1;
else
if( ~isempty(o.seed) )
% utilize seed segmentation removing boundaries if necessary
S = o.seed; assert(isa(S,'uint32') && size(S,1)==h && size(S,2)==w);
if(o.bounds), S = spDetectMex('boundaries',S,E,0,o.nThreads); end
else
% initialize superpixels at half resolution
s=1/2; h1 = h-mod(h,1/s); w1 = w-mod(w,1/s);
I0 = imResample(I(1:h1,1:w1,:),s);
E0 = imResample(E(1:h1,1:w1),s);
S = uint32(reshape(0:h1*w1*s*s-1,h1*s,w1*s));
% refine superpixels at half resolution
p = [o.nIter*2 o.nThreads sigs(1)*s*s sigs(2)/s/s sigs(3:4)];
S = spDetectMex('sticky',S,convTri(I0,1),E0,p);
S = imResample(S,1/s,'nearest');
S = uint32(imPad(single(S),[0 h-h1 0 w-w1],'replicate'));
end
% refine superpixels at full resolution
p = [o.nIter o.nThreads sigs]; b=0;
S = spDetectMex('sticky',S,convTri(I,1),E,p);
end
% add or remove superpixel boundaries as necessary
if(o.bounds~=b), S = spDetectMex('boundaries',S,E,o.bounds,o.nThreads); end
% optionally merge superpixels
if(o.merge>0 && o.bounds), S = spDetectMex('merge',S,E,o.merge); end
% optionally create visualization
if(nargout>=2), V=spDetectMex('visualize',S,I,o.bounds); end
end