-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
189 lines (157 loc) · 6.44 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# %%
from typing import Iterator, Optional
import io
import pandas as pd
import chess.pgn
from tqdm import tqdm
from numpy import int32
# %%
def load_opening_data() -> pd.DataFrame:
"""Return a dataframe with the opening data. All openings have a position and a name.
Data is downloaded from https://github.com/lichess-org/chess-openings."""
eco_a = pd.read_csv("files/a.tsv", sep="\t", index_col="epd")
ECO_B = pd.read_csv("files/b.tsv", sep="\t", index_col="epd")
ECO_C = pd.read_csv("files/c.tsv", sep="\t", index_col="epd")
ECO_D = pd.read_csv("files/d.tsv", sep="\t", index_col="epd")
ECO_E = pd.read_csv("files/e.tsv", sep="\t", index_col="epd")
STARTING_POSITION = pd.DataFrame.from_dict(
data={
"name": ["Start"],
"epd": ["rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq -"],
"pgn": None,
"eco": None,
},
orient="columns",
).set_index("epd")
OPENINGS = pd.concat([eco_a, ECO_B, ECO_C, ECO_D, ECO_E, STARTING_POSITION]).drop(
columns=["uci"]
)
# Rename position after 1. d4 d5 to get some differentiating to other 1. d4 openings
OPENINGS.loc[
"rnbqkbnr/ppp1pppp/8/3p4/3P4/8/PPP1PPPP/RNBQKBNR w KQkq -", "name"
] = "Closed Game"
OPENINGS = shorten_names(OPENINGS)
return OPENINGS
def shorten_names(openings: pd.DataFrame) -> pd.DataFrame:
"""Replace opening names with their abbreviations and delete "opening", "variation"
and "game" and "defense" from the end of the name"""
ABBREVIATIONS = {
"Queen's Gambit Declined": "QGD",
"Queen's Gambit Accepted": "QGA",
"Queen's Gambit": "QG",
"King's Indian Attack": "KIA",
"King's Indian Defense": "KID",
"King's Gambit Declined": "KGD",
"King's Gambit Accepted": "KGA",
"King's Gambit": "KG",
"Ruy Lopez": "RL",
}
for i, name in enumerate(openings.name):
for long_name, short_name in ABBREVIATIONS.items():
if long_name in name:
name = name.replace(long_name, short_name)
if name != "King's Pawn Game":
name = (
name.replace(" Opening", "")
.replace(" Variation", "")
.replace(" Game", "")
.replace(" Defense", "")
)
openings.name[i] = name
return openings
# %%
def load_games(filename: str) -> Iterator[chess.pgn.Game]:
"""Load n games from the pgn file and return them as a list"""
with open(filename, encoding="utf8") as pgn_file:
# Downloaded from: https://database.nikonoel.fr/
while True:
game = chess.pgn.read_game(pgn_file)
if game is not None:
# Game == None when the end of the file is reached
yield game
else:
break
def get_positions(games: Iterator[chess.pgn.Game], n_games: int) -> pd.DataFrame:
"""Get epd positions from the first 18 moves of a given number of games."""
games_positions = []
for i in tqdm(range(n_games), desc="Extracting positions", unit=" games"):
try:
game = next(games)
except StopIteration:
break
positions = []
main_line = list(game.mainline())
for ply in range(36):
# Get first 18 Moves = 36 half moves
try:
move = main_line[ply]
except IndexError:
break
board = move.board()
positions.append(board.epd())
games_positions.append(positions)
return pd.DataFrame(games_positions)
# %%
def get_opening_name(epd: str, openings) -> Optional[str]:
"""Return opening name from epd, if exists."""
if epd in openings.index:
return openings.loc[epd, "name"]
return None
def get_adjacency_matrix(
positions: pd.DataFrame, openings: pd.DataFrame
) -> pd.DataFrame:
"""Iterate over all moves in all games. If a transposition of named openings is
found, add 1 to the adjacency matrix between the two openings"""
unique_names = openings.name.drop_duplicates()
adjacency_matrix = pd.DataFrame(
data=0, index=unique_names, columns=unique_names, dtype=int32
)
adjacency_matrix.loc["Start", "Start"] = 1
for game in tqdm(range(positions.shape[0]), desc="Analyzing games", unit=" games"):
last_opening_name = "Start"
for ply in range(positions.shape[1]):
epd = positions.iloc[game, ply]
new_opening_name = get_opening_name(epd, openings)
if new_opening_name is not None and new_opening_name != last_opening_name:
adjacency_matrix.loc[last_opening_name, new_opening_name] += 1
last_opening_name = new_opening_name
adjacency_matrix = remove_non_reached_nodes(adjacency_matrix)
return adjacency_matrix
def remove_non_reached_nodes(adjacency_matrix: pd.DataFrame) -> pd.DataFrame:
"""Remove variations that were not reached. An opening was not reached if it has
no incoming edges."""
# axis=1 for outgoing edges
# axis=0 for incoming edges
connected_nodes = adjacency_matrix.loc[(adjacency_matrix != 0).any(axis=0)].index
adjacency_matrix = adjacency_matrix.loc[connected_nodes, connected_nodes]
return adjacency_matrix
def find_longest_variation(openings) -> int:
"""Find longest named opening variation"""
len_max = 0
for pgn in openings.pgn:
game = chess.pgn.read_game(io.StringIO(pgn))
if game is not None:
len_mainline = len(list(game.mainline_moves()))
if len_mainline > len_max:
len_max = len_mainline
return len_max
def save_results(adjacency_matrix: pd.DataFrame, n_games: int) -> None:
"""Save adjacency matrix and number of occurrences of each position to csv file"""
adjacency_matrix.to_csv(f"results/adjacency_matrix_{n_games}.csv")
occurrences = adjacency_matrix.sum(axis=0)
occurrences.to_csv(
f"results/occurrences_{n_games}.csv", index_label="Id", header=["Occurrences"]
)
# %%
def main():
"""Main function"""
N_GAMES = 340000
FILENAME = "files/lichess_elite_2022-04.pgn"
OPENINGS = load_opening_data()
print(f"Longest line: {find_longest_variation(OPENINGS)} halfmoves")
games = load_games(FILENAME)
positions = get_positions(games, N_GAMES)
adjacency_matrix = get_adjacency_matrix(positions, OPENINGS)
save_results(adjacency_matrix, N_GAMES)
if __name__ == "__main__":
main()