-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSAT_SOLVER.v
424 lines (373 loc) · 13.1 KB
/
SAT_SOLVER.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
(** Homework Assignment 6#<br>#
#<a href="http://www.cs.berkeley.edu/~adamc/itp/">#Interactive Computer Theorem
Proving#</a><br>#
CS294-9, Fall 2006#<br>#
UC Berkeley *)
Require Import Arith Bool List.
Definition var := nat.
Definition lit := (bool * var)%type.
Definition clause := list lit.
Definition formula := list clause.
Definition asgn := var -> bool.
Definition satLit (l : lit) (a : asgn) :=
a (snd l) = fst l.
Fixpoint satClause (cl : clause) (a : asgn) {struct cl} : Prop :=
match cl with
| nil => False
| l :: cl' => satLit l a \/ satClause cl' a
end.
Fixpoint satFormula (fm : formula) (a : asgn) {struct fm} : Prop :=
match fm with
| nil => True
| cl :: fm' => satClause cl a /\ satFormula fm' a
end.
Definition bool_eq_dec : forall (x y : bool), {x = y} + {x <> y}.
decide equality.
Defined.
Lemma contradictory_assignment : forall s l cl a,
s <> fst l
-> satLit l a
-> satLit (s, snd l) a
-> satClause cl a.
intros.
red in H0, H1.
simpl in H1.
subst.
tauto.
Qed.
Hint Resolve contradictory_assignment.
Definition upd (a : asgn) (l : lit) : asgn :=
fun v : var =>
if eq_nat_dec v (snd l)
then fst l
else a v.
Lemma satLit_upd_eq : forall l a,
satLit l (upd a l).
unfold satLit, upd; simpl; intros.
destruct (eq_nat_dec (snd l) (snd l)); tauto.
Qed.
Hint Resolve satLit_upd_eq.
Lemma satLit_upd_neq : forall v l s a,
v <> snd l
-> satLit (s, v) (upd a l)
-> satLit (s, v) a.
unfold satLit, upd; simpl; intros.
destruct (eq_nat_dec v (snd l)); tauto.
Qed.
Hint Resolve satLit_upd_neq.
Lemma satLit_upd_neq2 : forall v l s a,
v <> snd l
-> satLit (s, v) a
-> satLit (s, v) (upd a l).
unfold satLit, upd; simpl; intros.
destruct (eq_nat_dec v (snd l)); tauto.
Qed.
Hint Resolve satLit_upd_neq2.
Lemma satLit_contra : forall s l a cl,
s <> fst l
-> satLit (s, snd l) (upd a l)
-> satClause cl a.
unfold satLit, upd; simpl; intros.
destruct (eq_nat_dec (snd l) (snd l)); intuition.
assert False; intuition.
Qed.
Hint Resolve satLit_contra.
Ltac magic_solver := simpl; intros; subst; intuition eauto; firstorder;
match goal with
| [ H1 : satLit ?l ?a, H2 : satClause ?cl ?a |- _ ] =>
assert (satClause cl (upd a l)); firstorder
end.
Definition setClause : forall (cl : clause) (l : lit),
{cl' : clause |
forall a, satClause cl (upd a l) <-> satClause cl' a}
+ {forall a, satLit l a -> satClause cl a}.
refine (fix setClause (cl : clause) (l : lit) {struct cl}
: {cl' : clause |
forall a, satClause cl (upd a l) <-> satClause cl' a}
+ {forall a, satLit l a -> satClause cl a} :=
match cl return {cl' : clause |
forall a, satClause cl (upd a l) <-> satClause cl' a}
+ {forall a, satLit l a -> satClause cl a} with
| nil => inleft _ (exist _ nil _)
| (s, v) :: cl' =>
if eq_nat_dec v (snd l)
then if bool_eq_dec s (fst l)
then inright _ _
else match setClause cl' l with
| inleft (exist cl'' _) => inleft _ (exist _ cl'' _)
| inright _ => inright _ _
end
else match setClause cl' l with
| inleft (exist cl'' _) => inleft _ (exist _ ((s, v) :: cl'') _)
| inright _ => inright _ _
end
end); clear setClause; magic_solver.
Defined.
Definition setClauseSimple (cl : clause) (l : lit) :=
match setClause cl l with
| inleft (exist cl' _) => Some cl'
| inright _ => None
end.
Eval compute in setClauseSimple nil (true, 0).
Eval compute in setClauseSimple ((true, 0) :: nil) (true, 0).
Eval compute in setClauseSimple ((true, 0) :: nil) (false, 0).
Eval compute in setClauseSimple ((true, 0) :: nil) (true, 1).
Eval compute in setClauseSimple ((true, 0) :: nil) (false, 1).
Eval compute in setClauseSimple ((true, 0) :: (true, 1) :: nil) (true, 1).
Eval compute in setClauseSimple ((true, 0) :: (true, 1) :: nil) (false, 1).
Eval compute in setClauseSimple ((true, 0) :: (false, 1) :: nil) (true, 1).
Eval compute in setClauseSimple ((true, 0) :: (false, 1) :: nil) (false, 1).
Definition isNil : forall (A : Set) (ls : list A), {ls = nil} + {True}.
destruct ls; eauto.
Defined.
Implicit Arguments isNil [A].
Lemma satLit_idem_lit : forall l a l',
satLit l a
-> satLit l' a
-> satLit l' (upd a l).
unfold satLit, upd; simpl; intros.
destruct (eq_nat_dec (snd l') (snd l)); congruence.
Qed.
Hint Resolve satLit_idem_lit.
Lemma satLit_idem_clause : forall l a cl,
satLit l a
-> satClause cl a
-> satClause cl (upd a l).
induction cl; simpl; intuition.
Qed.
Hint Resolve satLit_idem_clause.
Lemma satLit_idem_formula : forall l a fm,
satLit l a
-> satFormula fm a
-> satFormula fm (upd a l).
induction fm; simpl; intuition.
Qed.
Hint Resolve satLit_idem_formula.
Definition setFormula : forall (fm : formula) (l : lit),
{fm' : formula |
forall a, satFormula fm (upd a l) <-> satFormula fm' a}
+ {forall a, satLit l a -> ~satFormula fm a}.
refine (fix setFormula (fm : formula) (l : lit) {struct fm}
: {fm' : formula |
forall a, satFormula fm (upd a l) <-> satFormula fm' a}
+ {forall a, satLit l a -> ~satFormula fm a} :=
match fm return {fm' : formula |
forall a, satFormula fm (upd a l) <-> satFormula fm' a}
+ {forall a, satLit l a -> ~satFormula fm a} with
| nil => inleft _ (exist _ nil _)
| cl :: fm' =>
match setClause cl l with
| inleft (exist cl' _) =>
if isNil cl'
then inright _ _
else match setFormula fm' l with
| inleft (exist fm'' _) => inleft _ (exist _ (cl' :: fm'') _)
| inright _ => inright _ _
end
| inright _ =>
match setFormula fm' l with
| inleft (exist fm'' _) => inleft _ (exist _ fm'' _)
| inright _ => inright _ _
end
end
end); clear setFormula; magic_solver.
Defined.
Definition setFormulaSimple (fm : formula) (l : lit) :=
match setFormula fm l with
| inleft (exist fm' _) => Some fm'
| inright _ => None
end.
Eval compute in setFormulaSimple nil (true, 0).
Eval compute in setFormulaSimple (((true, 0) :: nil) :: nil) (true, 0).
Eval compute in setFormulaSimple (((false, 0) :: nil) :: nil) (true, 0).
Eval compute in setFormulaSimple (((false, 1) :: nil) :: nil) (true, 0).
Eval compute in setFormulaSimple (((false, 1) :: (true, 0) :: nil) :: nil) (true, 0).
Eval compute in setFormulaSimple (((false, 1) :: (false, 0) :: nil) :: nil) (true, 0).
Hint Extern 1 False => discriminate.
Hint Extern 1 False =>
match goal with
| [ H : In _ (_ :: _) |- _ ] => inversion H; clear H; subst
end.
Definition findUnitClause : forall (fm : formula),
{l : lit | In (l :: nil) fm}
+ {forall l, ~In (l :: nil) fm}.
refine (fix findUnitClause (fm : formula)
: {l : lit | In (l :: nil) fm}
+ {forall l, ~In (l :: nil) fm} :=
match fm return {l : lit | In (l :: nil) fm}
+ {forall l, ~In (l :: nil) fm} with
| nil => inright _ _
| (l :: nil) :: _ => inleft _ (exist _ l _)
| _ :: fm' =>
match findUnitClause fm' with
| inleft (exist l _) => inleft _ (exist _ l _)
| inright _ => inright _ _
end
end); clear findUnitClause; magic_solver.
Defined.
Lemma unitClauseTrue : forall l a fm,
In (l :: nil) fm
-> satFormula fm a
-> satLit l a.
induction fm; intuition.
inversion H.
inversion H; subst; simpl in H0; intuition.
Qed.
Hint Resolve unitClauseTrue.
Definition unitPropagate : forall (fm : formula), option (sigS (fun fm' : formula =>
{l : lit |
(forall a, satFormula fm a -> satLit l a)
/\ forall a, satFormula fm (upd a l) <-> satFormula fm' a})
+ {forall a, ~satFormula fm a}).
intro fm.
refine (match findUnitClause fm with
| inleft (exist l _) =>
match setFormula fm l with
| inleft (exist fm' _) =>
Some (inleft _ (existS (fun fm' : formula =>
{l : lit |
(forall a, satFormula fm a -> satLit l a)
/\ forall a, satFormula fm (upd a l) <-> satFormula fm' a})
fm' (exist _ l _)))
| inright _ => Some (inright _ _)
end
| inright _ => None
end); magic_solver.
Defined.
Definition unitPropagateSimple (fm : formula) :=
match unitPropagate fm with
| None => None
| Some (inleft (existS fm' (exist l _))) => Some (Some (fm', l))
| Some (inright _) => Some None
end.
Eval compute in unitPropagateSimple nil.
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: nil).
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: ((false, 0) :: nil) :: nil).
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: ((false, 1) :: nil) :: nil).
Eval compute in unitPropagateSimple (((true, 0) :: nil) :: ((false, 0) :: (false, 1) :: nil) :: nil).
Eval compute in unitPropagateSimple (((false, 0) :: (false, 1) :: nil) :: ((true, 0) :: nil) :: nil).
Definition chooseSplit (fm : formula) :=
match fm with
| ((l :: _) :: _) => l
| _ => (true, 0)
end.
Definition negate (l : lit) := (negb (fst l), snd l).
Hint Unfold satFormula.
Lemma satLit_dec : forall l a,
{satLit l a} + {satLit (negate l) a}.
destruct l.
unfold satLit; simpl; intro.
destruct b; destruct (a v); simpl; auto.
Qed.
Definition alist := list lit.
Fixpoint interp_alist (al : alist) : asgn :=
match al with
| nil => fun _ => true
| l :: al' => upd (interp_alist al') l
end.
Definition boundedSat (bound : nat) (fm : formula)
: option ({al : alist | satFormula fm (interp_alist al)}
+ {forall a, ~satFormula fm a}).
refine (fix boundedSat (bound : nat) (fm : formula) {struct bound}
: option ({al : alist | satFormula fm (interp_alist al)}
+ {forall a, ~satFormula fm a}) :=
match bound with
| O => None
| S bound' =>
if isNil fm
then Some (inleft _ (exist _ nil _))
else match unitPropagate fm with
| Some (inleft (existS fm' (exist l _))) =>
match boundedSat bound' fm' with
| None => None
| Some (inleft (exist al _)) => Some (inleft _ (exist _ (l :: al) _))
| Some (inright _) => Some (inright _ _)
end
| Some (inright _) => Some (inright _ _)
| None =>
let l := chooseSplit fm in
match setFormula fm l with
| inleft (exist fm' _) =>
match boundedSat bound' fm' with
| None => None
| Some (inleft (exist al _)) => Some (inleft _ (exist _ (l :: al) _))
| Some (inright _) =>
match setFormula fm (negate l) with
| inleft (exist fm' _) =>
match boundedSat bound' fm' with
| None => None
| Some (inleft (exist al _)) => Some (inleft _ (exist _ (negate l :: al) _))
| Some (inright _) => Some (inright _ _)
end
| inright _ => Some (inright _ _)
end
end
| inright _ =>
match setFormula fm (negate l) with
| inleft (exist fm' _) =>
match boundedSat bound' fm' with
| None => None
| Some (inleft (exist al _)) => Some (inleft _ (exist _ (negate l :: al) _))
| Some (inright _) => Some (inright _ _)
end
| inright _ => Some (inright _ _)
end
end
end
end); simpl; intros; subst; intuition; try generalize dependent (interp_alist al).
firstorder.
firstorder.
firstorder.
firstorder.
assert (satFormula fm (upd a0 l)); firstorder.
assert (satFormula fm (upd a0 l)); firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
firstorder.
destruct (satLit_dec l a);
[assert (satFormula fm (upd a l))
| assert (satFormula fm (upd a (negate l)))]; firstorder.
destruct (satLit_dec l a);
[assert (satFormula fm (upd a l))
| assert (satFormula fm (upd a (negate l)))]; firstorder.
destruct (satLit_dec l a);
[assert (satFormula fm (upd a l))
| assert (satFormula fm (upd a (negate l)))]; firstorder.
destruct (satLit_dec l a);
[assert (satFormula fm (upd a l))
| assert (satFormula fm (upd a (negate l)))]; firstorder.
destruct (satLit_dec l a); intuition eauto;
assert (satFormula fm (upd a l)); firstorder.
destruct (satLit_dec l a); intuition eauto;
assert (satFormula fm (upd a l)); firstorder.
firstorder.
firstorder.
destruct (satLit_dec l a); intuition eauto;
assert (satFormula fm (upd a (negate l))); firstorder.
destruct (satLit_dec l a); intuition eauto;
assert (satFormula fm (upd a (negate l))); firstorder.
destruct (satLit_dec l a);
[assert (satFormula fm (upd a l))
| assert (satFormula fm (upd a (negate l)))]; firstorder.
Defined.
Definition boundedSatSimple (bound : nat) (fm : formula) :=
match boundedSat bound fm with
| None => None
| Some (inleft (exist a _)) => Some (Some a)
| Some (inright _) => Some None
end.
Eval compute in boundedSatSimple 100 nil.
Eval compute in boundedSatSimple 100 (((true, 0) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: nil) :: ((false, 0) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: (false, 1) :: nil) :: ((true, 1) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: (false, 1) :: nil) :: ((true, 1) :: (false, 0) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((true, 0) :: (false, 1) :: nil) :: ((false, 0) :: (false, 0) :: nil) :: ((true, 1) :: nil) :: nil).
Eval compute in boundedSatSimple 100 (((false, 0) :: (true, 1) :: nil) :: ((false, 1) :: (true, 0) :: nil) :: nil).
Recursive Extraction boundedSat.