-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_undet_index_stats.py
executable file
·532 lines (445 loc) · 21.9 KB
/
compute_undet_index_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import os
import glob
import re
import sys
import socket
import couchdb
import logging
import argparse
import yaml
import json
import distance
import operator
try:
import ConfigParser
except ImportError:
import configparser
CONFIG = {}
logger = logging.getLogger(__name__)
def setupServer(conf):
db_conf = conf['statusdb']
url="https://{0}:{1}@{2}".format(db_conf['username'], db_conf['password'], db_conf['url'])
return couchdb.Server(url)
def load_yaml_config(config_file):
"""Load YAML config file
:param str config_file: The path to the configuration file.
:returns: A dict of the parsed config file.
:rtype: dict
:raises IOError: If the config file cannot be opened.
"""
if type(config_file) is file:
CONFIG.update(yaml.load(config_file) or {})
return CONFIG
else:
try:
with open(config_file, 'r') as f:
content = yaml.load(f)
CONFIG.update(content)
return content
except IOError as e:
e.message = "Could not open configuration file \"{}\".".format(config_file)
raise e
class Indexes:
#indexes_by_kit looks like:
#Kit_name:
# i7_index1:
# index_name: index_seq
# ...
# i5_index2:
indexes_by_kit = {}
#indexes looks like:
#index_seq: ((index_name, index_type, kit_name), ....)
indexes = {}
def __init__(self, indexes_file):
try:
with open(indexes_file, 'r') as f:
self.indexes_by_kit = yaml.load(f)
except IOError as e:
e.message = "Could not open configuration file \"{}\".".format(indexes_file)
raise e
#now create a more index centric object
for kit_type in self.indexes_by_kit: #for each kit type
if kit_type not in self.indexes_by_kit:
print("file {} badly fomatted".format(indexes_file))
return
for index_type in self.indexes_by_kit[kit_type]: # for each type of indexes
for index_name, index_seq in self.indexes_by_kit[kit_type][index_type].items():
index_obj = {'name': index_name, 'index_type': index_type, 'kit_type': kit_type}
self._add_index(index_seq, index_obj)
#computes reverse complement
def _reverse_complement(self, index):
for base in index:
if base not in 'ATCGNatcgn':
print("Error: NOT a DNA sequence")
return None
complement_dict = {"A":"T", "C":"G", "G":"C", "T":"A", "N":"N", "a":"t", "c":"g", "g":"c", "t":"a", "n":"n" }
return "".join([complement_dict[base] for base in reversed(index)])
#check if index exists in the indexes list
def is_index(self, index):
if index in self.indexes or self._reverse_complement(index) in self.indexes:
return True
else:
return False
def _add_index(self, index_seq, index_obj):
index_to_modify = ""
if index_seq in self.indexes:
index_to_modify = index_seq
elif self._reverse_complement(index_seq) in self.indexes:
index_to_modify = self._reverse_complement(index_seq)
else:
index_to_modify = index_seq
self.indexes[index_to_modify] = []
#add the information
self.indexes[index_to_modify].append(index_obj)
#returns all kits
def return_kits(self):
kits = []
for kit_type in self.indexes_by_kit:
kits.append(kit_type)
return kits
#still to be defined
def check_left_shift_conflicts(self):
#checks if indexes from the same library after a left shift are conflicting
for kit_type in self.indexes_by_kit: #for each lib kit type
for index_type in self.indexes_by_kit[kit_type]: # for each type of indexes
for index_name, index_seq in self.indexes_by_kit[kit_type][index_type].items():
fake_index = index_seq[1:] + "A"
for index_name_check, index_seq_check in self.indexes_by_kit[kit_type][index_type].items():
hamming_dist = distance.hamming(index_seq_check, fake_index)
if hamming_dist <= 2:
print("{} {} {} {} {}".format(index_seq, index_seq_check, fake_index, hamming_dist, kit_type))
def get_FC_type(FCid):
FC_type = ""
if "ST-" in FCid:
FC_type = "HiSeqX"
elif "000000000-" in FCid:
FC_type = "MiSeq"
else:
FC_type = "HiSeq2500"
return FC_type
import time
from datetime import date
def check_single_sample_lanes(instrument_type):
couch=setupServer(CONFIG)
flowcell_db = couch["x_flowcells"]
flowcell_docs = {}
for fc_doc in flowcell_db:
try:
undetermined = flowcell_db[fc_doc]["Undetermined"]
except KeyError:
continue
flowcell_docs[flowcell_db[fc_doc]["RunInfo"]["Id"]] = fc_doc
undet_stats = {}
indexes = {}
date_limit = date(16,3,1)
for FCid in sorted(flowcell_docs):
# first check that I have all necessary info to extract information
fc_doc = flowcell_docs[FCid]
FC_type = get_FC_type(FCid)
#if a instrument type is specifed process only FCs run on that instrument
if instrument_type is not None:
if instrument_type != FC_type:
continue
instrument_name = flowcell_db[fc_doc]['RunInfo']['Instrument']
if instrument_name not in undet_stats:
undet_stats[instrument_name] = {}
#this is working only HiSeqX
#only recent runs
start_date_string = flowcell_db[fc_doc]['RunInfo']['Date']
year = start_date_string[0:2]
month = start_date_string[2:4]
day = start_date_string[4:6]
fc_date = date(int(year), int(month), int(day))
if fc_date < date_limit:
continue
#understand which ones are the FCs with a single sample per lane
single_sample_lanes = []
lanes = {}
if 'samplesheet_csv' not in flowcell_db[fc_doc]:
continue
for sample in flowcell_db[fc_doc]['samplesheet_csv']:
if sample['Lane'] not in lanes:
lanes[sample['Lane']] = []
lanes[sample['Lane']].append(sample['index'])
for lane in lanes:
#if only one sample per lane
if len(lanes[lane]) == 1:
single_sample_lanes.append([lane, lanes[lane][0]])
#now I know what are the lanes with a single index
#now collect stats
for lane_index in single_sample_lanes:
lane = lane_index[0]
index = lane_index[1]
#get percentage of undetermined
if lane not in flowcell_db[fc_doc]["Undetermined"]:
continue #it means this lane has no undetermined
pc_undet = [sample['% of thelane'] for sample in flowcell_db[fc_doc]['illumina']['Demultiplex_Stats']['Barcode_lane_statistics'] if sample['Lane']==lane and sample['Barcode sequence']=='unknown'][0]
try:
pc_undet = float(pc_undet)
except ValueError: #sometimes it is empty
continue
if pc_undet > 10:
if index not in undet_stats[instrument_name]:
undet_stats[instrument_name][index] = 0 #initialiaze this
indexes[index] = 0 #mark this as seen
undet_stats[instrument_name][index] += 1 # seen a lane with high amount of undetermined
print(",", end=' ')
for index in indexes:
print("{},".format(index), end=' ')
print("")
for instrument in undet_stats:
print("{},".format(instrument), end=' ')
for index in indexes:
if index in undet_stats[instrument]:
print("{},".format(undet_stats[instrument][index]), end=' ')
else:
print("0,", end=' ')
print("")
print("")
def find_undetermined_index_over_time(index_to_be_searched, instrument_type):
couch=setupServer(CONFIG)
flowcell_db = couch["x_flowcells"]
flowcell_docs = {}
for fc_doc in flowcell_db:
try:
undetermined = flowcell_db[fc_doc]["Undetermined"]
except KeyError:
continue
flowcell_docs[flowcell_db[fc_doc]["RunInfo"]["Id"]] = fc_doc
time_line = []
for FCid in sorted(flowcell_docs):
# first check that I have all necessary info to extract information
fc_doc = flowcell_docs[FCid]
FC_type = get_FC_type(FCid)
#if a instrument type is specifed process only FCs run on that instrument
if instrument_type is not None:
if instrument_type != FC_type:
continue
undetermined = flowcell_db[fc_doc]["Undetermined"]
lanes_undet = [FCid, []]
for lane in ['1','2','3','4','5','6','7','8']:
if lane not in undetermined:
continue
index_to_be_searched_count = 0
for undetermined_index in undetermined[lane]:
if index_to_be_searched in undetermined_index:
index_to_be_searched_count = undetermined[lane][undetermined_index]
lanes_undet[1].append([lane, index_to_be_searched_count])
if len(lanes_undet[1]) > 0:
time_line.append(lanes_undet)
for FC in time_line:
FCid = FC[0]
for lane in FC[1]:
print("{}_{} {}".format(FCid, lane[0], lane[1]))
def undet_index_to_projects(index_to_be_searched, instrument_type, min_occurences=0):
status_db = setupServer(CONFIG)
workset_db = status_db['worksets']
workset_project_view = workset_db.view('project/ws_proj')
flowcell_db = status_db["x_flowcells"]
flowcell_docs = {}
counter = 0
projects_with_undet_in_fc_set = set()
worksets_with_undet_in_fc = {}
for fc_doc in flowcell_db:
try:
undetermined = flowcell_db[fc_doc]["Undetermined"]
except KeyError:
continue
FCid = flowcell_db[fc_doc]["RunInfo"]["Id"]
# first check that I have all necessary info to extract information
FC_type = get_FC_type(FCid)
#if a instrument type is specifed process only FCs run on that instrument
if instrument_type is not None:
if instrument_type != FC_type:
continue
undetermined = flowcell_db[fc_doc]["Undetermined"]
for lane in ['1','2','3','4','5','6','7','8']:
if lane not in undetermined:
continue
index_to_be_searched_count = 0
if index_to_be_searched in undetermined[lane] and undetermined[lane][index_to_be_searched] > min_occurences:
name = 'SampleName'
for samplesheet_entry in flowcell_db[fc_doc]["samplesheet_csv"]:
if 'SampleName' not in samplesheet_entry:
name = 'Sample_Name'
samples_with_undet_in_lane = set([samplesheet_entry[name] for samplesheet_entry in flowcell_db[fc_doc]["samplesheet_csv"] if samplesheet_entry['Lane']==lane])
projects_with_undet_in_lane = set([samplesheet_entry[name].split("_")[0] for samplesheet_entry in flowcell_db[fc_doc]["samplesheet_csv"] if samplesheet_entry['Lane']==lane])
projects_with_undet_in_fc_set.update(projects_with_undet_in_lane)
#find out which workset contains these samples
for project in projects_with_undet_in_lane:
#for each proejct look which workset has been involved
#if len(workset_project_view[project].rows) > 1:
# import pdb
# pdb.set_trace()
samples_with_undet_ws = {}
for sample in samples_with_undet_in_lane:
#now I need to figure out in which WS the samples were... might be more than one as samples might be pooled
for row in workset_project_view[project].rows:
ws_doc_id = row.id
ws_id = list(row.value.keys())[0] #I am pretty sure that for each row I have a sinlge entry
if sample in list(row.value[ws_id]['samples'].keys()):
location = row.value[ws_id]['samples'][sample]['location']
#now I know that this sample in this lane in this FC was affected by index presence and I know the position
if ws_id not in worksets_with_undet_in_fc:
worksets_with_undet_in_fc[ws_id] = {}
if FCid not in worksets_with_undet_in_fc[ws_id]:
worksets_with_undet_in_fc[ws_id][FCid] = {}
if lane not in worksets_with_undet_in_fc[ws_id][FCid]:
worksets_with_undet_in_fc[ws_id][FCid][lane] = set()
worksets_with_undet_in_fc[ws_id][FCid][lane].add((sample,location))
for ws_id in sorted(worksets_with_undet_in_fc):
print(ws_id)
for run_id in sorted(worksets_with_undet_in_fc[ws_id]):
print("\t{}".format(run_id))
for lane in sorted(worksets_with_undet_in_fc[ws_id][run_id]):
sys.stdout.write("\t\t{}: ".format(lane))
for sample_location in worksets_with_undet_in_fc[ws_id][run_id][lane]:
sys.stdout.write("({},{}) ".format(sample_location[0], sample_location[1]))
sys.stdout.write('\n')
def fetch_undermined_stats():
#initialise
couch=setupServer(CONFIG)
flowcell_db = couch["x_flowcells"]
#initialise counters for all FCs
MostOccurringUndetIndexes = {}
FC_num = 0
lanes_num = 0
MostOccurringUndetIndexes["Total"] = {}
#for HiSeqX FCs
FC_XTen_num = 0
lanes_Xten_num = 0
MostOccurringUndetIndexes["HiSeqX"] = {}
#for MiSeq FCs
FC_MiSeq_num = 0
lanes_MiSeq_num = 0
MostOccurringUndetIndexes["MiSeq"] = {}
#for HiSeq2500 FCs
FC_HiSeq_num = 0
lanes_HiSeq_num = 0
MostOccurringUndetIndexes["HiSeq2500"] = {}
for fc_doc in sorted(flowcell_db):
# first check that I have all necessary info to extract information
try:
undetermined = flowcell_db[fc_doc]["Undetermined"]
except KeyError:
continue
FCid = flowcell_db[fc_doc]["RunInfo"]["Id"]
FC_type = get_FC_type(FCid)
FC_num += 1
if FC_type == "HiSeqX":
FC_XTen_num += 1
elif FC_type == "HiSeq2500":
FC_HiSeq_num += 1
elif FC_type == "MiSeq":
FC_MiSeq_num += 1
#we can use the illumina Demultiplex_Stats Barcode_lane_statistics to fetch info about indexes
for lane in undetermined:
#for each lane
if len(undetermined[lane]) > 1: # if there are elements (there is the NoIndex case)
if 'TOTAL' in undetermined[lane]:
del undetermined[lane]['TOTAL']
most_occuring_undet = sorted(list(undetermined[lane].items()), key=operator.itemgetter(1), reverse=True)[0]
lanes_num += 1
if FC_type == "HiSeqX":
lanes_Xten_num += 1
elif FC_type == "HiSeq2500":
lanes_HiSeq_num += 1
elif FC_type == "MiSeq":
lanes_MiSeq_num += 1
if most_occuring_undet[0] not in MostOccurringUndetIndexes[FC_type]:
MostOccurringUndetIndexes[FC_type][most_occuring_undet[0]] = 0
MostOccurringUndetIndexes[FC_type][most_occuring_undet[0]] += 1
if most_occuring_undet[0] not in MostOccurringUndetIndexes["Total"]:
MostOccurringUndetIndexes["Total"][most_occuring_undet[0]] = 0
MostOccurringUndetIndexes["Total"][most_occuring_undet[0]] += 1
print("Flowcells (lanes): {} ({})".format(FC_num, lanes_num))
print("HiSeqX (lanes): {} ({})".format(FC_XTen_num, lanes_Xten_num))
print("HiSeq2500 (lanes): {} ({})".format(FC_HiSeq_num, lanes_HiSeq_num))
print("MiSeq (lanes): {} ({})".format(FC_MiSeq_num, lanes_MiSeq_num))
print("Most occuring undetermined (seen in #lanes)")
print("All Flowcells:")
for twenty_most_occuring_undet in sorted(list(MostOccurringUndetIndexes["Total"].items()), key=operator.itemgetter(1), reverse=True)[0:10]:
print("{}\t{}\t{}".format(twenty_most_occuring_undet[0], twenty_most_occuring_undet[1], twenty_most_occuring_undet[1]/float(lanes_num)))
print("All HiSeqX:")
for twenty_most_occuring_undet in sorted(list(MostOccurringUndetIndexes["HiSeqX"].items()), key=operator.itemgetter(1), reverse=True)[0:10]:
print("{}\t{}\t{}".format(twenty_most_occuring_undet[0], twenty_most_occuring_undet[1], twenty_most_occuring_undet[1]/float(lanes_Xten_num)))
print("All HiSeq2500:")
for twenty_most_occuring_undet in sorted(list(MostOccurringUndetIndexes["HiSeq2500"].items()), key=operator.itemgetter(1), reverse=True)[0:10]:
print("{}\t{}\t{}".format(twenty_most_occuring_undet[0], twenty_most_occuring_undet[1], twenty_most_occuring_undet[1]/float(lanes_HiSeq_num)))
print("All MiSeq:")
for twenty_most_occuring_undet in sorted(list(MostOccurringUndetIndexes["MiSeq"].items()), key=operator.itemgetter(1), reverse=True)[0:10]:
print("{}\t{}\t{}".format(twenty_most_occuring_undet[0], twenty_most_occuring_undet[1], twenty_most_occuring_undet[1]/float(lanes_MiSeq_num)))
def fetch_pooled_projects(instrument_type):
status_db = setupServer(CONFIG)
flowcell_db = status_db["x_flowcells"]
counter = 0
projects_pooled = {}
for fc_doc in flowcell_db:
if 'RunInfo' not in flowcell_db[fc_doc]:
continue
FCid = flowcell_db[fc_doc]["RunInfo"]["Id"]
# first check that I have all necessary info to extract information
FC_type = get_FC_type(FCid)
#if a instrument type is specifed process only FCs run on that instrument
if instrument_type is not None:
if instrument_type != FC_type:
continue
if 'illumina' not in flowcell_db[fc_doc]:
print("Not illumina field found in doc")
continue
if 'Demultiplex_Stats' not in flowcell_db[fc_doc]['illumina']:
print("Not Demultiplex_Stats field found in doc")
continue
if 'Barcode_lane_statistics' not in flowcell_db[fc_doc]['illumina']['Demultiplex_Stats']:
print("Not Barcode_lane_statistics field found in doc")
continue
demux_stats = flowcell_db[fc_doc]['illumina']['Demultiplex_Stats']['Barcode_lane_statistics']
for lane in ['1','2','3','4','5','6','7','8']:
samples_in_lane = [entry['Sample'] for entry in demux_stats if entry['Lane'] == lane and not(entry['Sample'] == 'unknown' or entry['Sample'] == 'Undetermined') ]
if len(samples_in_lane) > 1:
#it means pooled
projects = set( entry['Project'] for entry in demux_stats if entry['Lane'] == lane and not(entry['Sample'] == 'unknown' or entry['Sample'] == 'Undetermined') )
samples_concat= ""
for sample in sorted(samples_in_lane):
samples_concat += sample + " "
for project in projects:
if project not in projects_pooled:
projects_pooled[project] = set()
projects_pooled[project].add(samples_concat)
for project in projects_pooled:
print(project)
for pool in projects_pooled[project]:
print("\t{}".format(pool))
def main(args):
configuration_file = args.config
load_yaml_config(configuration_file)
if args.mode == 'most_undet':
fetch_undermined_stats()
if args.mode == 'check_undet_index':
if args.index is None:
sys.exit("in this mode --index must be specified")
find_undetermined_index_over_time(args.index, args.instrument_type)
if args.mode == 'workset_undet':
if args.index is None:
sys.exit("in this mode --index must be specified")
undet_index_to_projects(args.index, args.instrument_type, args.min_occurences)
if args.mode == 'single_sample_lanes':
check_single_sample_lanes("HiSeqX")
if args.mode == 'fetch_pooled_projects':
fetch_pooled_projects(args.instrument_type)
if __name__ == '__main__':
parser = argparse.ArgumentParser("""This scripts queries statusdb x_flowcell_db and fetch informaiton about runs.
The following operations are supported:
- check_undet_index: given a specific index checks all FCs and prints all FC and lanes where the indx appears as undetermined
- most_undet: outputs a summary about undetermiend indexes, printing the most 20 most occurring indexes for each instrument type
- single_sample_lanes: prints stats about HiSeqX lanes run with a single sample in it
- workset_undet: prints for each workset the FC, lanes and samples where the specified index has been found in undet. For each sample the plate position is printed.
""")
parser.add_argument('--config', help="configuration file", type=str, required=True)
parser.add_argument('--indexes', help="yamls file containing indexes we want to analyse", type=str)
parser.add_argument('--min_occurences', help="minimum number of occurences in undet in workset_undet mode", type=int, default=0)
parser.add_argument('--mode', help="define what action needs to be executed", type=str, required=True, choices=('check_undet_index', 'most_undet', 'single_sample_lanes', 'workset_undet', 'fetch_pooled_projects'))
parser.add_argument('--index', help="a specifc index (e.g., CTTGTAAT) to be searched across lanes and FCs", type=str)
parser.add_argument('--instrument-type', help="type of instrument", type=str, default=None, choices=('HiSeqX', 'MiSeq', 'HiSeq2500'))
args = parser.parse_args()
main(args)