Skip to content

Commit a92fe61

Browse files
Fix docs: replace DomainSets.infimum/supremum with IntervalSets.leftendpoint/rightendpoint
DomainSets no longer exports infimum/supremum. Replace all uses across documentation with IntervalSets.leftendpoint/rightendpoint and add IntervalSets to docs/Project.toml. Co-Authored-By: Chris Rackauckas <[email protected]>
1 parent f46e26b commit a92fe61

18 files changed

+54
-33
lines changed

docs/Project.toml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ DomainSets = "5b8099bc-c8ec-5219-889f-1d9e522a28bf"
99
FastGaussQuadrature = "442a2c76-b920-505d-bb47-c5924d526838"
1010
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
1111
Integrals = "de52edbc-65ea-441a-8357-d3a637375a31"
12+
IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953"
1213
LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
1314
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
1415
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
@@ -40,6 +41,7 @@ DomainSets = "0.6, 0.7"
4041
FastGaussQuadrature = "1"
4142
Flux = "0.14.17, 0.15, 0.16"
4243
Integrals = "4"
44+
IntervalSets = "0.7"
4345
LineSearches = "7.2"
4446
Lux = "1"
4547
LuxCUDA = "0.3.2"

docs/src/developer/debugging.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,8 @@ PDE solvers.
77

88
```julia
99
using NeuralPDE, ModelingToolkit, Flux, Zygote
10-
import DomainSets: Interval, infimum, supremum
10+
import DomainSets: Interval
11+
using IntervalSets: leftendpoint, rightendpoint
1112
# 2d wave equation, neumann boundary condition
1213
@parameters x, t
1314
@variables u(..)

docs/src/examples/3rd.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,8 @@ We will use physics-informed neural networks.
1717
```@example 3rdDerivative
1818
using NeuralPDE, Lux, ModelingToolkit
1919
using Optimization, OptimizationOptimJL, OptimizationOptimisers
20-
import DomainSets: Interval, infimum, supremum
20+
import DomainSets: Interval
21+
using IntervalSets: leftendpoint, rightendpoint
2122
2223
@parameters x
2324
@variables u(..)
@@ -59,7 +60,7 @@ using Plots
5960
analytic_sol_func(x) = (π * x * (-x + (π^2) * (2 * x - 3) + 1) - sin(π * x)) / (π^3)
6061
6162
dx = 0.05
62-
xs = [infimum(d.domain):(dx / 10):supremum(d.domain) for d in domains][1]
63+
xs = [leftendpoint(d.domain):(dx / 10):rightendpoint(d.domain) for d in domains][1]
6364
u_real = [analytic_sol_func(x) for x in xs]
6465
u_predict = [first(phi(x, res.u)) for x in xs]
6566

docs/src/examples/linear_parabolic.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,8 @@ with a physics-informed neural network.
2828
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimisers,
2929
OptimizationOptimJL, LineSearches
3030
using Plots
31-
using DomainSets: Interval, infimum, supremum
31+
using DomainSets: Interval
32+
using IntervalSets: leftendpoint, rightendpoint
3233
3334
@parameters t, x
3435
@variables u(..), w(..)
@@ -98,7 +99,7 @@ res = solve(prob, OptimizationOptimisers.Adam(1e-2); maxiters = 5000, callback)
9899
phi = discretization.phi
99100
100101
# Analysis
101-
ts, xs = [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
102+
ts, xs = [leftendpoint(d.domain):0.01:rightendpoint(d.domain) for d in domains]
102103
depvars = [:u, :w]
103104
minimizers_ = [res.u.depvar[depvars[i]] for i in 1:length(chain)]
104105

docs/src/examples/nonlinear_elliptic.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,8 @@ This is done using a derivative neural network approximation.
2929
```@example nonlinear_elliptic
3030
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL, Roots
3131
using Plots
32-
using DomainSets: Interval, infimum, supremum
32+
using DomainSets: Interval
33+
using IntervalSets: leftendpoint, rightendpoint
3334
3435
@parameters x, y
3536
Dx = Differential(x)
@@ -106,7 +107,7 @@ res = solve(prob, BFGS(); maxiters = 100, callback)
106107
phi = discretization.phi
107108
108109
# Analysis
109-
xs, ys = [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
110+
xs, ys = [leftendpoint(d.domain):0.01:rightendpoint(d.domain) for d in domains]
110111
depvars = [:u, :w]
111112
minimizers_ = [res.u.depvar[depvars[i]] for i in 1:2]
112113

docs/src/examples/nonlinear_hyperbolic.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,8 @@ using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL, Roots,
3737
LineSearches
3838
using SpecialFunctions
3939
using Plots
40-
using DomainSets: Interval, infimum, supremum
40+
using DomainSets: Interval
41+
using IntervalSets: leftendpoint, rightendpoint
4142
4243
@parameters t, x
4344
@variables u(..), w(..)
@@ -105,7 +106,7 @@ res = Optimization.solve(prob, BFGS(linesearch = BackTracking()); maxiters = 200
105106
phi = discretization.phi
106107
107108
# Analysis
108-
ts, xs = [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
109+
ts, xs = [leftendpoint(d.domain):0.01:rightendpoint(d.domain) for d in domains]
109110
depvars = [:u, :w]
110111
minimizers_ = [res.u.depvar[depvars[i]] for i in 1:length(chain)]
111112

docs/src/examples/wave.md

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@ Further, the solution of this equation with the given boundary conditions is pre
1818
```@example wave
1919
using NeuralPDE, Lux, Optimization, OptimizationOptimJL
2020
using DomainSets: Interval
21+
using IntervalSets: leftendpoint, rightendpoint
2122
2223
@parameters t, x
2324
@variables u(..)
@@ -64,7 +65,7 @@ We can plot the predicted solution of the PDE and compare it with the analytical
6465
```@example wave
6566
using Plots
6667
67-
ts, xs = [infimum(d.domain):dx:supremum(d.domain) for d in domains]
68+
ts, xs = [leftendpoint(d.domain):dx:rightendpoint(d.domain) for d in domains]
6869
function analytic_sol_func(t, x)
6970
sum([(8 / (k^3 * pi^3)) * sin(k * pi * x) * cos(C * k * pi * t) for k in 1:2:50000])
7071
end
@@ -99,7 +100,8 @@ with grid discretization `dx = 0.05` and physics-informed neural networks. Here,
99100
```@example wave2
100101
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL
101102
using Plots, Printf
102-
using DomainSets: Interval, infimum, supremum
103+
using DomainSets: Interval
104+
using IntervalSets: leftendpoint, rightendpoint
103105
104106
@parameters t, x
105107
@variables u(..) Dxu(..) Dtu(..) O1(..) O2(..)
@@ -169,7 +171,7 @@ res = Optimization.solve(prob, BFGS(); maxiters = 2000)
169171
phi = discretization.phi[1]
170172
171173
# Analysis
172-
ts, xs = [infimum(d.domain):0.05:supremum(d.domain) for d in domains]
174+
ts, xs = [leftendpoint(d.domain):0.05:rightendpoint(d.domain) for d in domains]
173175
174176
μ_n(k) = (v * sqrt(4 * k^2 * π^2 - b^2 * L^2 * v^2)) / (2 * L)
175177
function b_n(k)
@@ -200,7 +202,7 @@ end
200202
gif(anim, "1Dwave_damped_adaptive.gif", fps = 200)
201203
202204
# Surface plot
203-
ts, xs = [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
205+
ts, xs = [leftendpoint(d.domain):0.01:rightendpoint(d.domain) for d in domains]
204206
u_predict = reshape(
205207
[first(phi([t, x], res.u.depvar.u)) for
206208
t in ts for x in xs], (length(ts), length(xs)))

docs/src/tutorials/constraints.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,8 @@ with Physics-Informed Neural Networks.
2323
```@example fokkerplank
2424
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL, LineSearches
2525
using Integrals, Cubature
26-
using DomainSets: Interval, infimum, supremum
26+
using DomainSets: Interval
27+
using IntervalSets: leftendpoint, rightendpoint
2728
# the example is taken from this article https://arxiv.org/abs/1910.10503
2829
@parameters x
2930
@variables p(..)
@@ -95,7 +96,7 @@ using Plots
9596
C = 142.88418699042 #fitting param
9697
analytic_sol_func(x) = C * exp((1 / (2 * _σ^2)) * (2 * α * x^2 - β * x^4))
9798
98-
xs = [infimum(d.domain):0.01:supremum(d.domain) for d in domains][1]
99+
xs = [leftendpoint(d.domain):0.01:rightendpoint(d.domain) for d in domains][1]
99100
u_real = [analytic_sol_func(x) for x in xs]
100101
u_predict = [first(phi(x, res.u)) for x in xs]
101102

docs/src/tutorials/derivative_neural_network.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,8 @@ using the second numeric derivative `Dt(Dtu1(t,x))`.
5454
```@example derivativenn
5555
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimisers,
5656
OptimizationOptimJL, LineSearches, Plots
57-
using DomainSets: Interval, infimum, supremum
57+
using DomainSets: Interval
58+
using IntervalSets: leftendpoint, rightendpoint
5859
5960
@parameters t, x
6061
Dt = Differential(t)
@@ -127,7 +128,7 @@ And some analysis:
127128
```@example derivativenn
128129
using Plots
129130
130-
ts, xs = [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
131+
ts, xs = [leftendpoint(d.domain):0.01:rightendpoint(d.domain) for d in domains]
131132
minimizers_ = [res.u.depvar[sym_prob.depvars[i]] for i in 1:length(chain)]
132133
133134
u1_real(t, x) = exp(-t) * sinpi(x)

docs/src/tutorials/dgm.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,8 @@ u(t, 1) & = 0
5454
using NeuralPDE
5555
using ModelingToolkit, Optimization, OptimizationOptimisers
5656
using Distributions
57-
using DomainSets: Interval, infimum, supremum
57+
using DomainSets: Interval
58+
using IntervalSets: leftendpoint, rightendpoint
5859
using MethodOfLines, OrdinaryDiffEq
5960
using Plots
6061

0 commit comments

Comments
 (0)