Skip to content

Vector output for PINO ODE #871

@KirillZubov

Description

@KirillZubov

Implement vector output for PINO ODE

draft test case:

#vector outputs 
@testset "Example ode system: du1 = cos(p * t); du2 = sin(p * t)" begin
    equation = (u, p, t) -> [cos(p[1] * t), sin(p[2] * t)]
    tspan = (0.0f0, 1.0f0)
    u0 = 1.0f0
    prob = ODEProblem(equation, u0, tspan)

    input_branch_size = 2
    deeponet1 = LuxNeuralOperators.DeepONet(
        Chain(
            Dense(input_branch_size => 10, Lux.tanh_fast), Dense(10 => 10, Lux.tanh_fast), Dense(10 => 10)),
        Chain(Dense(1 => 10, Lux.tanh_fast), Dense(10 => 10, Lux.tanh_fast),
            Dense(10 => 10, Lux.tanh_fast)))
    deeponet2 = LuxNeuralOperators.DeepONet(
        Chain(
            Dense(input_branch_size => 10, Lux.tanh_fast), Dense(10 => 10, Lux.tanh_fast), Dense(10 => 10)),
        Chain(Dense(1 => 10, Lux.tanh_fast), Dense(10 => 10, Lux.tanh_fast),
            Dense(10 => 10, Lux.tanh_fast)))

    deeponets = [deeponet1, deeponet1]

    bounds = [(1.0f0, pi), (2.0f0, 3.0f0)]
    number_of_parameters = 50
    strategy = StochasticTraining(40)
    opt = OptimizationOptimisers.Adam(0.03)
    alg = PINOODE(deeponets, opt, bounds, number_of_parameters; strategy = strategy)
    sol = solve(prob, alg, verbose = true, maxiters = 3000)

    function get_trainset(bounds, tspan, number_of_parameters, dt)
        p_ = [range(start = b[1], length = number_of_parameters, stop = b[2])
              for b in bounds]
        p = vcat([collect(reshape(p_i, 1, size(p_i, 1))) for p_i in p_]...)
        t_ = collect(tspan[1]:dt:tspan[2])
        t = collect(reshape(t_, 1, size(t_, 1), 1))
        (p, t)
    end

    ground_solution = (u0, p, t) -> [u0[1] + sin(p * t) / (p), u0[2] - cos(p * t) / (p)]
    function ground_solution_f(p, t)
        reduce(hcat,
            [[ground_solution(u0, p[:, i], t[j]) for j in axes(t, 2)] for i in axes(p, 2)])
    end

    (p, t) = get_trainset(bounds, tspan, 50, 0.025f0)
    ground_solution_ = ground_solution_f(p, t)
    predict = sol.interp((p, t))
    @test ground_solution_predict rtol=0.01

    p, t = get_trainset(bounds, tspan, 100, 0.01f0)
    ground_solution_ = ground_solution_f(p, t)
    predict = sol.interp((p, t))
    @test ground_solution_predict rtol=0.01
end

ref
SciML/NeuralOperators.jl#9
#806

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions