@@ -35,7 +35,7 @@ make sure that `julia` is found in the path. For more
3535information see the ` julia_setup() ` function from
3636[ JuliaCall] ( https://github.com/JuliaInterop/JuliaCall ) .
3737
38- ## Google Collab Notebooks
38+ ## Google Colab Notebooks
3939
4040As a demonstration, check out the following notebooks:
4141
@@ -162,7 +162,7 @@ Plotly is much prettier!
162162
163163If we want to have a more accurate solution, we can send ` abstol ` and ` reltol ` . Defaults are ` 1e-6 ` and ` 1e-3 ` respectively.
164164Generally you can think of the digits of accuracy as related to 1 plus the exponent of the relative tolerance, so the default is
165- two digits of accuracy. Absolute tolernace is the accuracy near 0.
165+ two digits of accuracy. Absolute tolerance is the accuracy near 0.
166166
167167In addition, we may want to choose to save at more time points. We do this by giving an array of values to save at as ` saveat ` .
168168Together, this looks like:
@@ -458,7 +458,7 @@ tspan <- c(0.0, 100.0)
458458constant_lags <- c(20.0 )
459459JuliaCall :: julia_assign(" u0" , u0 )
460460JuliaCall :: julia_assign(" tspan" , tspan )
461- JuliaCall :: julia_assign(" constant_lags" , tspan )
461+ JuliaCall :: julia_assign(" constant_lags" , constant_lags )
462462prob <- JuliaCall :: julia_eval(" DDEProblem(f, u0, h, tspan, constant_lags = constant_lags)" )
463463sol <- de $ solve(prob ,de $ MethodOfSteps(de $ Tsit5()))
464464udf <- as.data.frame(t(sapply(sol $ u ,identity )))
0 commit comments