-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSentimental_Analysis.py
152 lines (113 loc) · 5.58 KB
/
Sentimental_Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""Sentimental_Analysis_on_IMDB_Reviews(Using vanilla RNN).ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1lCZZuYg-5GZzOENryD7Js_IJZintxJj4
"""
from tensorflow import keras
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Embedding
from tensorflow.keras.layers import SimpleRNN
from tensorflow.keras.datasets import imdb
from tensorflow.keras import initializers
max_features = 20000 #This is used in loading the data , picks the most common (max_features) words
maxlen = 30 # maximum_length of sequence - truncate after thus limit
batch_size = 32
(x_train, y_train) , (x_test,y_test) = imdb.load_data(num_words=max_features)
print(len(x_train) , 'train sequences')
print(len(x_test) , 'test sequences')
#This pads (or truncates) the sequences so that they are of the maximum length
x_train = sequence.pad_sequences(x_train , maxlen = maxlen)
x_test = sequence.pad_sequences(x_test, maxlen = maxlen)
print("x_train shape: " , x_train.shape)
print("x_test shape: " , x_test.shape)
x_train[23 ,:] #here whats an example sequence looks like an imager sequence or simply array of integers
## RNN + EMBEDDED LAYER ARCHITECTURE
rnn_hidden_dim = 5
word_embedding_dim = 50
model_rnn = Sequential()
model_rnn.add(Embedding(max_features , word_embedding_dim))
model_rnn.add(SimpleRNN(rnn_hidden_dim,
kernel_initializer = initializers.RandomNormal(stddev = 0.001), #weights assigned to kernel
recurrent_initializer = initializers.Identity(gain = 1.0), #weights assigned to state layers
activation = 'relu' ,
input_shape = x_train.shape[1:]))
model_rnn.add(Dense(1 , activation = 'sigmoid'))
model_rnn.summary()
rmsprop = keras.optimizers.RMSprop(learning_rate = 0.0001)
model_rnn.compile(loss = "binary_crossentropy" ,
optimizer = rmsprop,
metrics = ['accuracy'])
model_rnn.fit(x_train , y_train ,
batch_size = batch_size,
epochs = 10,
validation_data = (x_test, y_test))
score, acc = model_rnn.evaluate(x_test , y_test,
batch_size = batch_size)
print("Test Score :" , score)
print("Test Accuracy" , acc)
# tuning the hyperparmaters for better performance
max_features = 20000 #This is used in loading the data , picks the most common (max_features) words
maxlen = 80 # maximum_length of sequence - truncate after thus limit
(x_train, y_train) , (x_test,y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train , maxlen = maxlen)
x_test = sequence.pad_sequences(x_test, maxlen = maxlen)
rnn_hidden_dim = 5
word_embedding_dim = 50
model_rnn = Sequential()
model_rnn.add(Embedding(max_features , word_embedding_dim))
model_rnn.add(SimpleRNN(rnn_hidden_dim,
kernel_initializer = initializers.RandomNormal(stddev = 0.001), #weights assigned to kernel
recurrent_initializer = initializers.Identity(gain = 1.0), #weights assigned to state layers
activation = 'relu' ,
input_shape = x_train.shape[1:]))
model_rnn.add(Dense(1 , activation = 'sigmoid'))
rmsprop = keras.optimizers.RMSprop(learning_rate = 0.0001)
model_rnn.compile(loss = "binary_crossentropy" ,
optimizer = rmsprop,
metrics = ['accuracy'])
model_rnn.fit(x_train , y_train ,
batch_size = batch_size,
epochs = 10,
validation_data = (x_test, y_test))
score, acc = model_rnn.evaluate(x_test , y_test,
batch_size = batch_size)
print("Test Score :" , score)
print("Test Accuracy" , acc)
max_features = 5000 #This is used in loading the data , picks the most common (max_features) words
maxlen = 80 # maximum_length of sequence - truncate after thus limit
(x_train, y_train) , (x_test,y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train , maxlen = maxlen)
x_test = sequence.pad_sequences(x_test, maxlen = maxlen)
rnn_hidden_dim = 5
word_embedding_dim = 20
model_rnn = Sequential()
model_rnn.add(Embedding(max_features , word_embedding_dim))
model_rnn.add(SimpleRNN(rnn_hidden_dim,
kernel_initializer = initializers.RandomNormal(stddev = 0.001), #weights assigned to kernel
recurrent_initializer = initializers.Identity(gain = 1.0), #weights assigned to state layers
activation = 'relu' ,
input_shape = x_train.shape[1:]))
model_rnn.add(Dense(1 , activation = 'sigmoid'))
rmsprop = keras.optimizers.RMSprop(learning_rate = 0.0001)
model_rnn.compile(loss = "binary_crossentropy" ,
optimizer = rmsprop,
metrics = ['accuracy'])
model_rnn.fit(x_train , y_train ,
batch_size = batch_size,
epochs = 10,
validation_data = (x_test, y_test))
score, acc = model_rnn.evaluate(x_test , y_test,
batch_size = batch_size)
print("Test Score :" , score)
print("Test Accuracy" , acc)
#just for more iterations in order to see its impact on performance
model_rnn.fit(x_train , y_train ,
batch_size = batch_size,
epochs = 10,
validation_data = (x_test, y_test))
score, acc = model_rnn.evaluate(x_test , y_test,
batch_size = batch_size)
print("Test Score :" , score)
print("Test Accuracy" , acc)