-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
69 lines (58 loc) · 2.21 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torchvision import datasets, transforms
from torchtoolbox.transform import Cutout
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def get_transform(input_size=224, is_val = False):
if is_val:
return transforms.Compose([
transforms.Resize([input_size,input_size]),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.2254, 0.225])
])
return transforms.Compose([
#transforms.RandomErasing(),
transforms.Resize([input_size,input_size]),
transforms.ColorJitter(0.15, 0.15, 0.15),
transforms.RandomCrop(input_size, padding=6), #从图片中随机裁剪出尺寸为 input_size 的图片,如果有 padding,那么先进行 padding,再随机裁剪 input_size 大小的图片
Cutout(0.2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.2254, 0.225])
])
def get_loaders(dataroot, train_batch_size, test_batch_size, input_size, workers, data_val_path):
train_data = datasets.ImageFolder(
root=os.path.join(dataroot, 'train'),
transform=get_transform(input_size=input_size))
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=train_batch_size,
shuffle=True,
num_workers=workers, pin_memory=True)
test_data = datasets.ImageFolder(
root=os.path.join(dataroot, 'val'),
transform=get_transform(input_size=input_size))
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=test_batch_size * 2,
shuffle=True,
num_workers=workers,
pin_memory=True)
val_data = datasets.ImageFolder(
root=data_val_path,
transform=get_transform(input_size=input_size, is_val = True))
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=test_batch_size * 2,
shuffle=True,
num_workers=workers,
pin_memory=True)
return train_loader, test_loader, val_loader