|
6 | 6 | \description{
|
7 | 7 | \emph{collapse} provides the following functions for fast manipulation of (mostly) data frames.
|
8 | 8 | \itemize{
|
9 |
| -\item \code{\link{fselect}} is a much faster alternative to \code{dplyr::select} to select columns using expressions involving column names. \code{\link{get_vars}} is a more versatile and programmer friendly function to efficiently select and replace columns by names, indices, logical vectors, regular expressions or using functions to identify columns. |
| 9 | +\item \code{\link{fselect}} is a much faster alternative to \code{dplyr::select} to select columns using expressions involving column names. \code{\link{get_vars}} is a more versatile and programmer friendly function to efficiently select and replace columns by names, indices, logical vectors, regular expressions, or using functions to identify columns. |
10 | 10 |
|
11 |
| -\item The functions \code{\link{num_vars}}, \code{\link{cat_vars}}, \code{\link{char_vars}}, \code{\link{fact_vars}}, \code{\link{logi_vars}} and \code{\link{date_vars}} are convenience functions to efficiently select and replace columns by data type. |
| 11 | +\item \code{\link{num_vars}}, \code{\link{cat_vars}}, \code{\link{char_vars}}, \code{\link{fact_vars}}, \code{\link{logi_vars}} and \code{\link{date_vars}} are convenience functions to efficiently select and replace columns by data type. |
12 | 12 |
|
13 |
| -\item \code{\link{add_vars}} efficiently adds new columns at any position within a data frame (default at the end). This can be done vie replacement (i.e. \code{add_vars(data) <- newdata}) or returning the appended data (i.e. \code{add_vars(data, newdata1, newdata2, \dots)}). Because of the latter, \code{add_vars} is also a more efficient alternative to \code{cbind.data.frame}. |
| 13 | +\item \code{\link{add_vars}} efficiently adds new columns at any position within a data frame (default at the end). This can be done vie replacement (i.e. \code{add_vars(data) <- newdata}) or returning the appended data, e.g., \code{add_vars(data, newdata1, newdata2, \dots)}. It is thus also an efficient alternative to \code{\link{cbind.data.frame}}. |
14 | 14 |
|
15 |
| -\item \code{\link{rowbind}} efficiently combines data frames / lists row-wise. The implementation is derived from \code{data.table::rbindlist}, it is also a fast alternative to \code{rbind.data.frame}. |
| 15 | +\item \code{\link{rowbind}} efficiently combines data frames / lists row-wise. The implementation is derived from \code{data.table::rbindlist}, it is also a fast alternative to \code{\link{rbind.data.frame}}. |
16 | 16 |
|
17 |
| -\item \code{\link{join}} provides fast class-agnostic and verbose table joins. |
| 17 | +\item \code{\link{join}} provides fast, class-agnostic, and verbose table joins. |
18 | 18 |
|
19 |
| -\item \code{\link{pivot}} efficiently reshapes data, supporting longer, wider and recast pivoting, as well as multi-column-pivots and taking along variable labels. |
| 19 | +\item \code{\link{pivot}} efficiently reshapes data, supporting longer, wider and recast pivoting, as well as multi-column-pivots and pivots taking along variable labels. |
20 | 20 |
|
21 |
| -\item \code{\link{fsubset}} is a much faster version of \code{\link{subset}} to efficiently subset vectors, matrices and data frames. If the non-standard evaluation offered by \code{\link{fsubset}} is not needed, the function \code{\link{ss}} is a much faster and also more secure alternative to \code{[.data.frame}. |
| 21 | +\item \code{\link{fsubset}} is a much faster version of \code{\link{subset}} to efficiently subset vectors, matrices and data frames. If the non-standard evaluation offered by \code{\link{fsubset}} is not needed, the function \code{\link{ss}} is a much faster and more secure alternative to \code{[.data.frame}. |
22 | 22 |
|
23 |
| -\item \code{\link{fslice}} is a much faster alternative to \code{dplyr::slice_[head|tail|min|max]} for filtering/deduplicating matrix-like objects (by groups). |
| 23 | +\item \code{\link[=fslice]{fslice(v)}} is a much faster alternative to \code{dplyr::slice_[head|tail|min|max]} for filtering/deduplicating matrix-like objects (by groups). |
24 | 24 |
|
25 |
| -\item \code{\link{fsummarise}} is a much faster version of \code{dplyr::summarise} when used together with the \link[=fast-statistical-functions]{Fast Statistical Functions} and \code{\link{fgroup_by}}, with whom it also supports super fast weighted aggregation. |
| 25 | +\item \code{\link{fsummarise}} is a much faster version of \code{dplyr::summarise}, especially when used together with the \link[=fast-statistical-functions]{Fast Statistical Functions} and \code{\link{fgroup_by}}. |
26 | 26 |
|
27 |
| -\item \code{\link{fmutate}} is a much faster version of \code{dplyr::mutate} when used together with the \link[=fast-statistical-functions]{Fast Statistical Functions} as well as fast \link[=data-transformations]{Data Transformation Functions} and \code{\link{fgroup_by}}. |
| 27 | +\item \code{\link{fmutate}} is a much faster version of \code{dplyr::mutate}, especially when used together with the \link[=fast-statistical-functions]{Fast Statistical Functions}, the fast \link[=data-transformations]{Data Transformation Functions}, and \code{\link{fgroup_by}}. |
28 | 28 |
|
29 |
| - |
30 |
| -\item \code{\link{ftransform}} is a much faster version of \code{\link{transform}}, which also supports list input and nested pipelines. \code{\link{settransform}} does all of that by reference, i.e. it modifies the data frame in the global environment. \code{\link{fcompute}} is similar to \code{\link{ftransform}} but only returns modified and computed columns in a new data frame. %As a new feature, it is now possible to bulk-process columns with \code{\link{ftransform}}, i.e. \code{ftransform(data, fscale(data[1:2]))} is the same as \code{ftransform(data, col1 = fscale(col1), col2 = fscale(col2))}, and \code{ftransform(data) <- fscale(data[1:2]))} or \code{settransform(data, fscale(data[1:2]))} are both equivalent to \code{data[1:2] <- fscale(data[1:2]))}. Non-matching columns are added to the data.frame. |
| 29 | +\item \code{\link[=ftransform]{ftransform(v)}} is a much faster version of \code{\link{transform}}, which also supports list input and nested pipelines. \code{\link[=ftransform]{settransform(v)}} does all of that by reference, i.e. it assigns to the calling environment. \code{\link[=fcompute]{fcompute(v)}} is similar to \code{\link[=ftransform]{ftransform(v)}} but only returns modified/computed columns. %As a new feature, it is now possible to bulk-process columns with \code{\link{ftransform}}, i.e. \code{ftransform(data, fscale(data[1:2]))} is the same as \code{ftransform(data, col1 = fscale(col1), col2 = fscale(col2))}, and \code{ftransform(data) <- fscale(data[1:2]))} or \code{settransform(data, fscale(data[1:2]))} are both equivalent to \code{data[1:2] <- fscale(data[1:2]))}. Non-matching columns are added to the data.frame. |
31 | 30 |
|
32 | 31 | \item \code{\link{roworder}} is a fast substitute for \code{dplyr::arrange}, but the syntax is inspired by \code{data.table::setorder}.
|
33 | 32 |
|
|
49 | 48 | \code{\link{ss}} \tab\tab No methods, for data frames \tab\tab Fast subset data frames \cr
|
50 | 49 | \code{\link[=fslice]{fslice(v)}} \tab\tab No methods, for matrices and data frames\tab\tab Fast slicing of rows \cr
|
51 | 50 | \code{\link{fsummarise}} \tab\tab No methods, for data frames \tab\tab Fast data aggregation \cr
|
52 |
| - \code{\link{fmutate}}, \code{\link[=ftransform]{(f/set)ftransform(<-)}} \tab\tab No methods, for data frames \tab\tab Compute, modify or delete columns (non-standard evaluation) \cr |
| 51 | + \code{\link{fmutate}}, \code{\link[=ftransform]{(f/set)transform(v)(<-)}} \tab\tab No methods, for data frames \tab\tab Compute, modify or delete columns (non-standard evaluation) \cr |
53 | 52 | %\code{\link{settransform}} \tab\tab No methods, for data frames \tab\tab Compute, modify or delete columns by reference (non-standard evaluation) \cr
|
54 | 53 | \code{\link[=fcompute]{fcompute(v)}} \tab\tab No methods, for data frames \tab\tab Compute or modify columns, returned in a new data frame (non-standard evaluation) \cr
|
55 | 54 | \code{\link[=roworder]{roworder(v)}} \tab\tab No methods, for data frames incl. pdata.frame \tab\tab Reorder rows and return data frame (standard and non-standard evaluation) \cr
|
|
0 commit comments