forked from simbaforrest/vpdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VPSample.h
42 lines (38 loc) · 1.57 KB
/
VPSample.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
* Copyright (c) 2011 Chen Feng (cforrest (at) umich.edu)
* and the University of Michigan
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <vector>
namespace VPSample {
std::vector<std::vector<float> *>* run(
//// Input arguments
// Arg 0, points
std::vector<std::vector<float> *> *mDataPoints,
// Arg 1, Number of desired samples
unsigned int mNSample,
// Arg 2, type of model: 0 - Planes 1 - 2dLines
unsigned int /*mModelType*/,
// ----- facultatives
// Arg 3, Non uniform first sampling vector(NULL-empty if uniform sampling is choosen)
double *mFirstSamplingVector = NULL,
// Arg 4, Non first sampling type: 0 - Uniform(def) 1 - Exp 2 - Kd-Tree
unsigned int mNFSamplingType = 1,
// Arg 5, Sigma Exp(def = 1.0) or neigh search for Kd-Tree (def = 10)
double mSigmaExp = 1.0, int mKdTreeRange = 10,
// Arg 6, only for kd-tree non first sampling: close points probability (def = 0.8)
double mKdTreeCloseProb = 0.8,
// Arg 7, only for kd-tree non first sampling: far points probability (def = 0.2)
double mKdTreeFarProb = 0.2
);
}