Skip to content

GP model has positive log-likelihood after optimisation  #1043

@enushi

Description

@enushi

Hi,

My GP model has positive log-likelihood after optimisation and furthermore I don't get any warning message that something could be going wrong. Here is the code to reproduce the problem:

Y = np.array([[ 2.64743328,  1.03329583,  0.76342846, -0.2054021 ,  0.55964613,
         0.37885527, -0.67376998, -0.71804405, -0.77531237, -0.77549353,
        -0.77524664, -0.77258172, -0.68680858,  2.64743328,  1.03329583,
         0.76342846, -0.2054021 ,  0.55964613,  0.37885527, -0.67376998,
        -0.71804405, -0.77531237, -0.77549353, -0.77524664, -0.77258172,
        -0.68680858,  2.64743328,  1.03329583,  0.76342846, -0.2054021 ,
         0.55964613,  0.37885527, -0.67376998, -0.71804405, -0.77531237,
        -0.77549353, -0.77524664, -0.77258172, -0.68680858]])

X = np.array([[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13.5],[15]]*3)

kernel = GPy.kern.RBF(input_dim=1, variance=0.5, lengthscale=1)

m = GPy.models.GPRegression(X, np.array(np.mat(Y)).T, kernel)

m.optimize(messages=True)
m.plot()
m.log_likelihood()

The log-likelihood of the model is 189.98926713194757. And this is the resulting posterior plot:
image

Is this an expected behaviour of the GPy package or a possible bug?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions