-
Notifications
You must be signed in to change notification settings - Fork 566
Open
Description
Hi,
My GP model has positive log-likelihood after optimisation and furthermore I don't get any warning message that something could be going wrong. Here is the code to reproduce the problem:
Y = np.array([[ 2.64743328, 1.03329583, 0.76342846, -0.2054021 , 0.55964613,
0.37885527, -0.67376998, -0.71804405, -0.77531237, -0.77549353,
-0.77524664, -0.77258172, -0.68680858, 2.64743328, 1.03329583,
0.76342846, -0.2054021 , 0.55964613, 0.37885527, -0.67376998,
-0.71804405, -0.77531237, -0.77549353, -0.77524664, -0.77258172,
-0.68680858, 2.64743328, 1.03329583, 0.76342846, -0.2054021 ,
0.55964613, 0.37885527, -0.67376998, -0.71804405, -0.77531237,
-0.77549353, -0.77524664, -0.77258172, -0.68680858]])
X = np.array([[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13.5],[15]]*3)
kernel = GPy.kern.RBF(input_dim=1, variance=0.5, lengthscale=1)
m = GPy.models.GPRegression(X, np.array(np.mat(Y)).T, kernel)
m.optimize(messages=True)
m.plot()
m.log_likelihood()
The log-likelihood of the model is 189.98926713194757. And this is the resulting posterior plot:
Is this an expected behaviour of the GPy package or a possible bug?
Metadata
Metadata
Assignees
Labels
No labels