-
Notifications
You must be signed in to change notification settings - Fork 566
Open
Description
I have 3 input dimensions (x, y, time) and 5 outputs. Below is the code I use
num_outputs = n_stations
n_inputs = 2
K1 = GPy.kern.Bias(input_dim=n_inputs)
K2 = GPy.kern.Linear(input_dim=n_inputs)
K3 = GPy.kern.Matern32(input_dim=n_inputs)
lcm_kernel = GPy.util.multioutput.LCM(input_dim=n_inputs,num_outputs=n_stations,kernels_list=[K1,K2,K3], W_rank = 5)
model = GPy.models.GPCoregionalizedRegression(X_list, Y_list, kernel=lcm_kernel)
# Optimize the model
model.optimize(messages=True, max_iters=1000)
X_list and Y_list have a length of num_outputs.
However, the following code does not work:
Y_pred, Y_var = model.predict(X_new, full_cov = True, Y_metadata = {"output_index":[0]})
I cannot make a prediction for one of my outputs (supposedly at index 0). I wasn't able to find anything on the documentation about this.
Metadata
Metadata
Assignees
Labels
No labels