Skip to content

GPCoregionalizedRegression Documention #1099

@anthony-meza

Description

@anthony-meza

I have 3 input dimensions (x, y, time) and 5 outputs. Below is the code I use

num_outputs = n_stations
n_inputs = 2
K1 = GPy.kern.Bias(input_dim=n_inputs)
K2 = GPy.kern.Linear(input_dim=n_inputs)
K3 = GPy.kern.Matern32(input_dim=n_inputs)
lcm_kernel = GPy.util.multioutput.LCM(input_dim=n_inputs,num_outputs=n_stations,kernels_list=[K1,K2,K3], W_rank = 5)


model = GPy.models.GPCoregionalizedRegression(X_list, Y_list, kernel=lcm_kernel)

# Optimize the model
model.optimize(messages=True, max_iters=1000)

X_list and Y_list have a length of num_outputs.

However, the following code does not work:
Y_pred, Y_var = model.predict(X_new, full_cov = True, Y_metadata = {"output_index":[0]})

I cannot make a prediction for one of my outputs (supposedly at index 0). I wasn't able to find anything on the documentation about this.

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions