-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy path02_a3c_grad.py
executable file
·152 lines (117 loc) · 4.88 KB
/
02_a3c_grad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python3
import gym
import ptan
import argparse
from tensorboardX import SummaryWriter
import torch
import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from lib import common
GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
REWARD_STEPS = 4
CLIP_GRAD = 0.1
PROCESSES_COUNT = 4
NUM_ENVS = 15
GRAD_BATCH = 64
TRAIN_BATCH = 2
if True:
ENV_NAME = "PongNoFrameskip-v4"
NAME = 'pong'
REWARD_BOUND = 18
else:
ENV_NAME = "BreakoutNoFrameskip-v4"
NAME = "breakout"
REWARD_BOUND = 400
TRAIN_BATCH = 4
def make_env():
return ptan.common.wrappers.wrap_dqn(gym.make(ENV_NAME))
def grads_func(proc_name, net, device, train_queue):
envs = [make_env() for _ in range(NUM_ENVS)]
agent = ptan.agent.PolicyAgent(lambda x: net(x)[0], device=device, apply_softmax=True)
exp_source = ptan.experience.ExperienceSourceFirstLast(envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
batch = []
frame_idx = 0
writer = SummaryWriter(comment=proc_name)
with common.RewardTracker(writer, stop_reward=REWARD_BOUND) as tracker:
with ptan.common.utils.TBMeanTracker(writer, batch_size=100) as tb_tracker:
for exp in exp_source:
frame_idx += 1
new_rewards = exp_source.pop_total_rewards()
if new_rewards and tracker.reward(new_rewards[0], frame_idx):
break
batch.append(exp)
if len(batch) < GRAD_BATCH:
continue
states_v, actions_t, vals_ref_v = \
common.unpack_batch(batch, net, last_val_gamma=GAMMA**REWARD_STEPS, device=device)
batch.clear()
net.zero_grad()
logits_v, value_v = net(states_v)
loss_value_v = F.mse_loss(value_v.squeeze(-1), vals_ref_v)
log_prob_v = F.log_softmax(logits_v, dim=1)
adv_v = vals_ref_v - value_v.detach()
log_prob_actions_v = adv_v * log_prob_v[range(GRAD_BATCH), actions_t]
loss_policy_v = -log_prob_actions_v.mean()
prob_v = F.softmax(logits_v, dim=1)
entropy_loss_v = ENTROPY_BETA * (prob_v * log_prob_v).sum(dim=1).mean()
loss_v = entropy_loss_v + loss_value_v + loss_policy_v
loss_v.backward()
tb_tracker.track("advantage", adv_v, frame_idx)
tb_tracker.track("values", value_v, frame_idx)
tb_tracker.track("batch_rewards", vals_ref_v, frame_idx)
tb_tracker.track("loss_entropy", entropy_loss_v, frame_idx)
tb_tracker.track("loss_policy", loss_policy_v, frame_idx)
tb_tracker.track("loss_value", loss_value_v, frame_idx)
tb_tracker.track("loss_total", loss_v, frame_idx)
# gather gradients
nn_utils.clip_grad_norm_(net.parameters(), CLIP_GRAD)
grads = [param.grad.data.cpu().numpy() if param.grad is not None else None
for param in net.parameters()]
train_queue.put(grads)
train_queue.put(None)
if __name__ == "__main__":
mp.set_start_method('spawn')
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda")
parser.add_argument("-n", "--name", required=True, help="Name of the run")
args = parser.parse_args()
device = "cuda" if args.cuda else "cpu"
env = make_env()
net = common.AtariA2C(env.observation_space.shape, env.action_space.n).to(device)
net.share_memory()
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE, eps=1e-3)
train_queue = mp.Queue(maxsize=PROCESSES_COUNT)
data_proc_list = []
for proc_idx in range(PROCESSES_COUNT):
proc_name = "-a3c-grad_" + NAME + "_" + args.name + "#%d" % proc_idx
data_proc = mp.Process(target=grads_func, args=(proc_name, net, device, train_queue))
data_proc.start()
data_proc_list.append(data_proc)
batch = []
step_idx = 0
grad_buffer = None
try:
while True:
train_entry = train_queue.get()
if train_entry is None:
break
step_idx += 1
if grad_buffer is None:
grad_buffer = train_entry
else:
for tgt_grad, grad in zip(grad_buffer, train_entry):
tgt_grad += grad
if step_idx % TRAIN_BATCH == 0:
for param, grad in zip(net.parameters(), grad_buffer):
param.grad = torch.FloatTensor(grad).to(device)
nn_utils.clip_grad_norm_(net.parameters(), CLIP_GRAD)
optimizer.step()
grad_buffer = None
finally:
for p in data_proc_list:
p.terminate()
p.join()